Package: stockassessment (via r-universe)

October 23, 2024
Title State-Space Assessment Model
Version 0.12.4
Date 2023-10-09
Author Anders Nielsen [aut, cre], Casper Berg [aut], Christoffer Moesgaard Albertsen [aut], Kasper Kristensen [aut], Mollie Brooks [aut], Vanessa Trijoulet [aut], Olav Nikolai Breivik [aut]
Maintainer Anders Nielsen <an@aqua.dtu.dk></an@aqua.dtu.dk>
Description Fitting SAM
License GPL-2
Depends R (>= $3.0.2$)
Imports TMB, ellipse, methods, stats, utils, grDevices, graphics, Matrix
LinkingTo TMB (>= 1.9.1), RcppEigen
Encoding UTF-8
<pre>URL https://github.com/fishfollower/SAM LazyData TRUE</pre>
BugReports https://github.com/fishfollower/SAM/issues SystemRequirements GNU make
Repository https://calbertsen.r-universe.dev
RemoteUrl https://github.com/fishfollower/SAM
RemoteRef rp_rebase
RemoteSha 1e60e3ca566eaa1208f036b68cdcde9ceb5df712
Contents
.SAM_replicate

2 Contents

$b0plot \ \dots $	7
b0table	8
$bc \ \dots $	9
c.sam	9
catchbyfleetplot	10
catchbyfleettable	10
catchplot	11
catchtable	12
caytable	12
clean.void.catches	13
coef.sam	13
componentplot	14
corplot	15
corplotcommon	15
dataplot	16
defcon	16
defpar	17
deterministicReferencepoints	18
empirobscorrplot	19
equilibriumbiomassplot	20
equilibriumbiomasstable	21
erbplot	21
erbtable	22
faytable	22
fbarplot	23
fbartable	25
fitfromweb	25
fitplot	26
forecast	26
forecastMSY	28
fselectivityplot	30
generationlengthplot	30
generationlengthtable	31
getAllDerivedValues	31
getFleet	32
getLowerBounds	32
getResidualFleets	33
·	
getUpperBounds	33
grad	34
her	34
hessian	36
ibc	37
icesAdviceRule	37
iibc	38
is.whole.positive.number	39
jacobian	40
jit	40
leaveout	41

Contents 3

lifeexpectancyplot	42
lifeexpectancytable	43
loadConf	43
logLik.sam	44
modelDescription	44
*	45
	51
	51
	52
	52
	53
	54
	55 55
	55 55
	56
	50 57
	57
1 1	58 50
	58 50
I	59
	59
1	60
1.	60
	61
1 71	61
1 ,	62
	63
predstdplot	66
print.hcr	67
print.sam	67
print.samcoef	68
print.samforecast	68
print.samres	69
print.samset	69
print.samypr	70
1 71	70
<u>.</u>	71
•	71
	72
1	72
1 1	73
	73
	74
	7 4 74
	74 75
T ····································	15 75
	76
referencepoints	77

.SAM_replicate

refit)
residuals.sam)
retro)
rmaxplot)
rmaxtable	
rmvnorm)
runwithout)
sam.fit	,
saveConf	7
sdplot	,
setS 89)
setSeq)
setup.sam.data)
simstudy	
simulate.sam)
sprplot	,
sprtable	,
srplot	ļ
ssbplot	í
ssbtable	j
stochasticReferencepoints)
stockassessment-deprecated)
summary.sam)
tableit)
tsbplot)
tsbtable	
write.data.files	
write.ices)
write.surveys	,
yearslostplot	,
yearslosttable	ŀ
ypr	í
yprplot)
yprtable)
108	3

Parallel replicate for modelforecast

Description

 $.\mathsf{SAM_replicate}$

Parallel replicate for modelforecast

addforecast 5

Usage

```
.SAM_replicate(
    n,
    expr,
    simplify = "array",
    ncores = 1,
    env = parent.frame(n + 1),
    par_precall = NULL,
    type = ifelse(.Platform$OS.type == "unix", "mclapply", "PSOCK")
)
```

Arguments

n number of replicates
expr expression
simplify simplify passes to sapply
ncores number of cores

env environment

par_precall Code to run when starting type type of parallelisation

Value

output

addforecast

SAM add forecasts

Description

SAM add forecasts

```
addforecast(
  fit,
  what,
  dotcol = "black",
  dotpch = 19,
  dotcex = 1.5,
  intervalcol = gray(0.5, alpha = 0.5),
  ...
)

## S3 method for class 'samforecast'
```

6 addRecruitmentCurve

```
addforecast(
  fit,
  what,
  dotcol = "black",
  dotpch = 19,
  dotcex = 1.5,
  intervalcol = gray(0.5, alpha = 0.5),
  ...
)
```

Arguments

```
fit the object returned from sam.fit
what what to plot
dotcol color for dot
dotpch pch for dot
dotcex cex for dot
intervalcol color for interval
extra arguments not currently used
```

Details

internal plotting fun

addRecruitmentCurve

Add stock-recruitment curve to srplot

Description

Add stock-recruitment curve to srplot

```
addRecruitmentCurve(
   fit,
   CI = TRUE,
   col = rgb(0.6, 0, 0),
   cicol = rgb(0.6, 0, 0, 0.3),
   plot = TRUE,
   PI = FALSE,
   picol = rgb(0.6, 0, 0),
   pilty = 2,
   ...
)
```

b0plot 7

```
## S3 method for class 'sam'
addRecruitmentCurve(
    fit,
    CI = TRUE,
    col = rgb(0.6, 0, 0),
    cicol = rgb(0.6, 0, 0, 0.3),
    plot = TRUE,
    PI = FALSE,
    picol = rgb(0.6, 0, 0),
    pilty = 2,
    year = NA_real_,
    lastR = NA_real_,
    ...
)
```

Arguments

fit	Object to show SR-curve for
CI	Add confidence intervals?
col	Color of fitted line
cicol	Color of confidence intervals
plot	Add the curve to a plot?
PI	Add prediction intervals?
picol	Color of prediction interval line
pilty	Line type of prediction interval line
	not used
year	Show recruitment calculated conditional on this year (for recruitment functions that depend on year)
lastR	Show recruitment calculated conditional on this previous recruitment (for recruitment functions that depend on recruitment the previous year)

See Also

srplot

b0plot

SAM equilibrium biomass in the absence of fishing plot

Description

SAM equilibrium biomass in the absence of fishing plot

8 b0table

Usage

```
b0plot(fit, ...)
## Default S3 method:
b0plot(fit, ...)
## S3 method for class 'samforecast'
b0plot(fit, ...)
## S3 method for class 'hcr'
b0plot(fit, ...)
```

Arguments

fit the object returned from sam.fit

... extra arguments transferred to plot including the following:
add logical, plotting is to be added on existing plot
ci logical, confidence intervals should be plotted
cicol color to plot the confidence polygon

Details

Plot of deterministic equilibrium biomass in the absence of fishing assuming biological parameters and selectivity for that year remains unchanged in the future.

b0table

B0 biomass table

Description

B0 biomass table

Usage

```
b0table(fit, ...)
## Default S3 method:
b0table(fit, ...)
```

Arguments

fit ...

... extra arguments not currently used

Details

•••

bc 9

bc

Spline basis for use with formula interface

Description

Spline basis for use with formula interface

Usage

```
bc(x, df = 3L, knots = NULL, Boundary.knots = range(x), intercept = FALSE)
```

Arguments

x Points to evaluate the basis in

df Degrees of freedom

knots Internal knots. If NULL, they are selected from quantiles of x.

Boundary.knots Boundary knots. Defaults to range of x

intercept Include an intercept in basis?

Value

A spline basis

c.sam

Collect sam objects

Description

Collect sam objects

Usage

```
## S3 method for class 'sam' c(...)
```

Arguments

... one or more sam fits (as returned from the sam. fit function) to be combined

Details

...

10 catchbyfleettable

 ${\tt catchbyfleetplot}$

SAM catchbyfleet plot

Description

SAM catchbyfleet plot

Usage

```
catchbyfleetplot(fit, obs.show = FALSE, ...)
```

Arguments

fit the object returned from sam.fit
obs.show if observations are to be shown also
... extra arguments transferred to plot

Details

Plot of estimated (and optionally observed) total catch in weight

catchbyfleettable

CatchByFleet table

Description

CatchByFleet table

Usage

```
catchbyfleettable(fit, obs.show = FALSE)
```

Arguments

fit object returned from sam.fit

obs. show logical add a column with catch sum of product rowsums(C*W)

Details

•••

catchplot 11

Description

SAM catch plot

Usage

```
catchplot(fit, obs.show = TRUE, drop = NULL, ...)
## S3 method for class 'sam'
catchplot(fit, obs.show = TRUE, drop = NULL, ...)
## S3 method for class 'samset'
catchplot(fit, obs.show = TRUE, drop = NULL, ...)
## S3 method for class 'samforecast'
catchplot(fit, obs.show = TRUE, drop = NULL, ...)
## S3 method for class 'hcr'
catchplot(fit, obs.show = TRUE, drop = NULL, ...)
```

Arguments

fit	the object returned from sam.fit
obs.show	if observations are to be shown also
drop	number of years to be left unplotted at the end. Default (NULL) is to not show years at the end with no catch information
	extra arguments transferred to plot including the following: add logical, plotting is to be added on existing plot ci logical, confidence intervals should be plotted cicol color to plot the confidence polygon

Details

Plot of estimated (and optionally observed) total catch in weight

12 caytable

catchtable

Catch table

Description

Catch table

Usage

```
catchtable(fit, obs.show = FALSE, ...)
## S3 method for class 'sam'
catchtable(fit, obs.show = FALSE, ...)
```

Arguments

fit object returned from sam.fit

obs. show logical add a column with catch sum of product rowsums(C*W)

... extra arguments not currently used

Details

...

caytable

Catch-at-age in numbers table

Description

Catch-at-age in numbers table

Usage

```
caytable(fit, fleet = which(fit$data$fleetTypes == 0))
```

Arguments

fit a fitted object of class 'sam' as returned from sam.fit

fleet the fleet number(s) to return catch summed for (default is to return the sum of

all residual fleets).

Details

...

clean.void.catches

clean.void.catches

remove void catches

Description

remove void catches

Usage

```
clean.void.catches(dat, conf)
```

Arguments

data for the sam model as returned from the setup.sam.data function

conf model configuration which can be set up using the defcon function and then

modified

Value

an updated dataset without the catches where F is fixed to zero

coef.sam

Extract fixed coefficients of sam object

Description

Extract fixed coefficients of sam object

Usage

```
## S3 method for class 'sam'
coef(object, ...)
```

Arguments

object sam fitted object as returned from the sam.fit function

... extra arguments

Details

fixed coefficients of sam object

14 componentplot

componentplot

Area plot of spawning components

Description

Area plot of spawning components

Usage

```
componentplot(fit, ...)

## S3 method for class 'sam'
componentplot(
    fit,
    onlyComponentYears = FALSE,
    ylab = "Composition",
    colSet = c("#332288", "#88CCEE", "#44AA99", "#117733", "#999933", "#DDCC77", "#661100",
        "#CC6677", "#882255", "#AA4499"),
    legend.pos = "bottom",
    bg = "white",
    ncol = length(cf),
    ...
)
```

Arguments

fit sam fit

... passed to legend

 $\verb"onlyComponentYears"$

If true, x axis is limited to the range with spawning component data. Otherwise,

the model years are used.

ylab Label for y axis

colSet Colors

legend.pos Legend position. See ?legend

bg Background of legend. See ?legend

ncol Number of columns in legend. See ?legend

Value

Nothing

Author(s)

Christoffer Moesgaard Albertsen

corplot 15

cor	n1	0	t
COI	L U	LU	ι

Plots between-age correlations by fleet, either estimated or empirical using residuals.

Description

Plots between-age correlations by fleet, either estimated or empirical using residuals.

Usage

```
corplot(x, ...)
## S3 method for class 'sam'
corplot(x, ...)
## S3 method for class 'samres'
corplot(x, ...)
```

Arguments

x Either a sam fit as returned by sam.fit OR the object returned from residuals.sam
... extra arguments to plot

corplotcommon

Common function for plotting correlation matrices.

Description

Common function for plotting correlation matrices.

Usage

```
corplotcommon(x, fn, ...)
```

Arguments

x a list of correlation matricesfn a vector of fleet namesextra arguments to plotcorr

16 defcon

dataplot

SAM Data plot

Description

SAM Data plot

Usage

```
dataplot(fit, col = NULL, fleet_type = NULL, fleet_names = NULL)
## S3 method for class 'sam'
dataplot(fit, col = NULL, fleet_type = NULL, fleet_names = NULL)
```

Arguments

fit the object returned from sam.fit

col color to use for each fleet, default is two sequential colors

fleet_type character vector giving the type of data per fleet. The default uses fit\$data\$fleetTypes

as follows:

fit\$data\$fleetTypes==0 "Catch at age"

fit\$data\$fleetTypes==1 "Catch at age with effort"
fit\$data\$fleetTypes==2 or 6 "Index at age"
fit\$data\$fleetTypes==3 "Biomass or catch index"

fit\$data\$fleetTypes==5 "Tagging data"
fit\$data\$fleetTypes==7 "Sum of fleets"

fleet_names character vector giving fleet names. The default is given by attr(fit\$data,"fleetNames")

Details

Plot data available for the stock

defcon

Setup basic minimal configuration for sam assessment

Description

Setup basic minimal configuration for sam assessment

```
defcon(dat, level = 1)
```

defpar 17

Arguments

dat sam data object

level 1 or 2 (1 most basic configuration, 2 configuration with AR correlation structure

on surveys)

Details

The configuration returned by defcon is intended as a help to set up a syntactically correct configuration for the sam model. The dimensions are set from the data (years, age-classes, and fleet types available). The configuration is intended to be fairly simplistic in the hope that the model configured will at least converge (not guaranteed). Most importantly: No model validation has been performed, so it should not be assumed that the returned model configuration will result in a sensible assessment of the stock. The actual model configuration is the responsibility of the user.

Value

a list containing the elements needed to configure a sam model (e.g. minAge, maxAge, maxAge, PlusGroup, keyLogFsta, ...).

defpar

Setup initial values for all model parameters and random effects.

Description

Setup initial values for all model parameters and random effects.

Usage

```
defpar(dat, conf, spinoutyear = 10)
```

Arguments

dat sam data object as returned from the function setup.sam.data

conf sam configuration list, which could be read from a configuration file via the

loadConf function. A default/dummy configuration can be generated via the

defcon function.

spinoutyear Technical setting only used for biological parameter process models to insure

equilibrium distribution in final edge year

Details

The model parameters and random effects are not initialized in any clever way - most are simply set to zero. If convergence problems occour different initial values can be tested, but it is more likely a problem with the model configuration.

Value

a list containing initial values for all model parameters and random effects in the model.

deterministicReferencepoints

Function to calculate reference points for the embedded deterministic model of a SAM fit

Description

The function estimates reference points based on deterministic per-recruit calculations with no process variance. The following reference points are implemented:

```
\mathbf{F} = \mathbf{x} F fixed to x, e.g., "F=0.3"
```

StatusQuo F in the last year of the assessment

StatusQuo-y F in the y years before the last in the assessment, e.g., "StatusQuo-1"

MSY F that maximizes yield

0.xMSY Fs that gives 0.x*100% of MSY, e.g., "0.95MSY"

Max F that maximizes yield per recruit

0.xdYPR F such that the derivative of yield per recruit is 0.x times the derivative at F=0, e.g., "0.1dYPR"

0.xSPR F such that spawners per recruit is 0.x times spawners per recruit at F=0, e.g., "0.35SPR" **0.xB0** F such that biomass is 0.x times the biomass at F=0, e.g., "0.2B0"

```
deterministicReferencepoints(fit, referencepoints, ...)
## S3 method for class 'sam'
deterministicReferencepoints(
  fit,
  referencepoints,
  catchType = "catch",
  nYears = 100,
  Frequence = seq(0, 2, len = 50),
  aveYears = max(fit\$data\$years) + (-9:0),
  selYears = max(fit$data$years),
  biasCorrect = FALSE,
  newton.control = list(),
  run = TRUE,
  equilibriumMethod = c("AD", "EC"),
  nosim_ci = 200,
  ncores = 1,
)
```

empirobscorrplot 19

Arguments

 $\begin{array}{ll} \text{fit} & A \text{ fitted SAM model} \\ \text{referencepoints} & \end{array}$

list of reference points to calculate (See details)

... other arguments not used

catchType Type of yield to optimize: landing, catch, or discard

nYears Number of years in per-recruit calculations

Fsequence Sequence of F values for plotting and starting values

aveYears Years to average over for biological input selYears Years to average over for selectivity

biasCorrect Should bias correction be used in sdreport?

newton.control Control arguments passed to the newton optimizer (See newton)

run Run estimation? If false, a list of arguments to MakeADFun is returned.

equilibriumMethod

Method to use to find equilibrium

nosim_ci Number of simulations for simulation based confidence intervals (only when

equilibriumMethod is EC)

ncores Number of cores for simulation

Value

List of estimated reference points List of estimated reference points

Examples

```
## Not run:
   deterministicReferencepoints(fit, c("MSY","0.95MSY","Max","0.35SPR","0.1dYPR","StatusQuo-3"))
## End(Not run)
```

empirobscorrplot

Plots the residual between-age correlation matrices by fleet.

Description

Plots the residual between-age correlation matrices by fleet.

```
empirobscorrplot(res, ...)
## S3 method for class 'samres'
empirobscorrplot(res, ...)
```

Arguments

```
res the object returned from residuals.sam
... extra arguments to plot
```

equilibriumbiomassplot

SAM equilibrium biomass plot

Description

SAM equilibrium biomass plot

Usage

```
equilibriumbiomassplot(fit, ...)
## Default S3 method:
equilibriumbiomassplot(fit, ...)
## S3 method for class 'samforecast'
equilibriumbiomassplot(fit, ...)
## S3 method for class 'hcr'
equilibriumbiomassplot(fit, ...)
```

Arguments

fit the object returned from sam.fit

extra arguments transferred to plot including the following:
add logical, plotting is to be added on existing plot
ci logical, confidence intervals should be plotted
cicol color to plot the confidence polygon

Details

Plot of deterministic equilibrium spawners per recruit assuming biological parameters and selectivity for that year remains unchanged in the future.

equilibrium biomas stable

```
equilibriumbiomasstable
```

equilibrium biomass table

Description

equilibrium biomass table

Usage

```
equilibriumbiomasstable(fit, ...)
## Default S3 method:
equilibriumbiomasstable(fit, ...)
```

Arguments

fit ... extra arguments not currently used

Details

...

erbplot

SAM effective reproductive output biomass plot

Description

SAM effective reproductive output biomass plot

```
erbplot(fit, ...)
## Default S3 method:
erbplot(fit, ...)
## S3 method for class 'samforecast'
erbplot(fit, ...)
## S3 method for class 'hcr'
erbplot(fit, ...)
```

22 faytable

Arguments

fit the object returned from sam.fit

... extra arguments transferred to plot including the following:

add logical, plotting is to be added on existing plot ci logical, confidence intervals should be plotted cicol color to plot the confidence polygon

Details

Plot of spawning stock biomass

erbtable

Effective reproductive biomass table

Description

Effective reproductive biomass table

Usage

```
erbtable(fit, ...)
## Default S3 method:
erbtable(fit, ...)
```

Arguments

fit ..

... extra arguments not currently used

Details

...

faytable

F-at-age table

Description

F-at-age table

fbarplot 23

Usage

```
faytable(fit, ...)
## S3 method for class 'sam'
faytable(fit, fleet = which(fit$data$fleetTypes == 0), ...)
```

Arguments

fit a fitted object of class 'sam' as returned from sam.fit
... extra arguments not currently used
fleet the fleet number(s) to return F summed for (default is to return the sum of all

Details

•••

fbarplot

SAM Fbar plot

residual fleets).

Description

SAM Fbar plot

```
fbarplot(fit, ...)
## S3 method for class 'sam'
fbarplot(
  fit,
 partial = TRUE,
  drop = NULL,
  pcol = "lightblue",
  page = NULL,
 plot = TRUE,
  effectiveF = any(!fit$conf$seasonTimes %in% c(0, 1)),
)
## S3 method for class 'samset'
fbarplot(
  fit,
  partial = FALSE,
  drop = NULL,
  pcol = "lightblue",
```

24 fbarplot

```
page = NULL,
)
## S3 method for class 'samforecast'
fbarplot(
 fit,
 partial = FALSE,
 drop = NULL,
 pcol = "lightblue",
 page = NULL,
)
## S3 method for class 'hcr'
fbarplot(
 fit,
 partial = FALSE,
 drop = NULL,
 pcol = "lightblue",
 page = NULL,
)
```

Arguments

fit	the object returned from sam.fit
	extra arguments transferred to plot including the following: add logical, plotting is to be added on existing plot ci logical, confidence intervals should be plotted cicol color to plot the confidence polygon
partial	true if included partial F's are to be plotted
drop	number of years to be left unplotted at the end. Default (NULL) is to not show years at the end with no catch information
pcol	color of partial lines
page	partial ages to plot
plot	true if fbar should be plotted
effectiveF	If TRUE, effective full year F based on catch and survival is plotted. If FALSE, full year F based on survival is plotted.

Details

Plot the defined fbar.

fbartable 25

fbartable

Fbar table

Description

Fbar table

Usage

```
fbartable(fit, ...)
## Default S3 method:
fbartable(fit, ...)
```

Arguments

fit ..

... extra arguments not currently used

Details

•••

fitfromweb

Read a fitted model from stockassessment.org

Description

Read a fitted model from stockassessment.org

Usage

```
fitfromweb(stockname, character.only = FALSE, return.all = FALSE)
```

Arguments

stockname The short-form name of a stock on stockassessment.org. This will (currently?)

not work for stocks defined via the AD Model builder version of SAM.

 $character.only \quad a \ logical \ indicating \ whether \ 'stockname' \ can \ be \ assumed \ to \ be \ a \ character \ string$

return. all a logical indicating whether everything from model.RData should be returned in

an environment

Details

...

26 forecast

fitplot

Plots fit to data

Description

Plots fit to data

Usage

```
fitplot(fit, log = TRUE, ...)
## S3 method for class 'sam'
fitplot(fit, log = TRUE, fleets = unique(fit$data$aux[, "fleet"]), ...)
```

Arguments

fit the object returned from sam.fit
log should the plot be against log-obs
... extra arguments to plot
fleets an integer vector of fleets to plot. Default is all of them

forecast

forecast function to do shortterm

Description

forecast function to do shortterm

```
forecast(
   fit,
   fscale = NULL,
   catchval = NULL,
   catchval.exact = NULL,
   fval = NULL,
   nextssb = NULL,
   landval = NULL,
   cwF = NULL,
   nosim = 1000,
   year.base = max(fit$data$years),
   ave.years = max(fit$data$years) + (-4:0),
   rec.years = max(fit$data$years) + (-9:0),
   label = NULL,
```

forecast 27

```
overwriteSelYears = NULL,
 deterministic = FALSE,
 processNoiseF = TRUE,
  customWeights = NULL,
  customSel = NULL,
  lagR = FALSE,
  splitLD = FALSE,
  addTSB = FALSE,
  useSWmodel = (fit$conf$stockWeightModel >= 1),
  useCWmodel = (fit$conf$catchWeightModel >= 1),
  useMOmodel = (fit$conf$matureModel >= 1),
  useNMmodel = (fit$conf$mortalityModel >= 1),
  savesim = FALSE,
  cf.cv.keep.cv = matrix(NA, ncol = 2 * sum(fit$data$fleetTypes == 0), nrow =
   length(catchval)),
  cf.cv.keep.fv = matrix(NA, ncol = 2 * sum(fit$data$fleetTypes == 0), nrow =
   length(catchval)),
  cf.keep.fv.offset = matrix(0, ncol = sum(fit$data$fleetTypes == 0), nrow =
    length(catchval)),
 estimate = median
)
```

Arguments

fit an assessment object of type sam, as returned from the function sam.fit fscale a vector of f-scales. See details.

catchval a vector of target catches. See details.

catchval.exact a vector of target catches which will be met without noise. See details.

fval a vector of target f values. See details.

nextssb a vector target SSB values the following year. See details

landval a vector of target catches. See details.

cwF a vector target custom weighted F values. customWeights must also be specified

nosim number of simulations default is 1000

year .base starting year default last year in assessment. Currently it is only supported to

use last assessment year or the year before

ave. years vector of years to average for weights, maturity, M and such

rec. years vector of years to use to resample recruitment from

label optional label to appear in short table

overwriteSelYears

if a vector of years is specified, then the average selectivity of those years is used

(not recommended)

deterministic option to turn all process noise off (not recommended, as it will likely cause

bias)

processNoiseF option to turn off process noise in F

28 forecastMSY

customWeights a vector of same length as number of age groups giving custom weights (cur-

rently only used for weighted average of F calculation)

customSel supply a custom selection vector that will then be used as fixed selection in all

years after the final assessment year (not recommended)

lagR if the second youngest age should be reported as recruits

splitLD if TRUE the result is split in landing and discards addTSB if TRUE the total stock biomass (TSB) is added

useSWmodel if TRUE the catch mean weight predicted from the assessment model is used

(can only be used for configurations supporting this)

useCWmodel if TRUE the catch mean weight predicted from the assessment model is used

(can only be used for configurations supporting this)

useM0model if TRUE the proportion mature predicted from the assessment model is used

(can only be used for configurations supporting this)

useNMmodel if TRUE the natural mortality predicted from the assessment model is used (can

only be used for configurations supporting this)

savesim save the individual simulations

cf.cv.keep.cv exotic option cf.cv.keep.fv exotic option

cf.keep.fv.offset

exotic option

estimate the summary function used (typically mean or median)

Details

There are three ways to specify a scenario. If e.g. four F values are specified (e.g. fval=c(.1,.2,.3,4)), then the first value is used in the last assessment year (base.year), and the three following in the three following years. Alternatively F's can be specified by a scale, or a target catch. Only one option can be used per year. So for instance to set a catch in the first year and an F-scale in the following one would write catchval=c(10000,NA,NA,NA), fscale=c(NA,1,1,1). The length of the vector specifies how many years forward the scenarios run.

Value

an object of type samforecast

forecastMSY Estimating Fmsy

Description

Estimating Fmsy

forecastMSY 29

Usage

```
forecastMSY(
  fit,
 nYears = 100,
 nlminb.control = list(eval.max = 2000, iter.max = 2000),
 rec.years = c(),
 ave.years = max(fit\$data\$years) + (-9:0),
 processNoiseF = FALSE,
)
## S3 method for class 'sam'
forecastMSY(
  fit,
  nYears = 100,
 nlminb.control = list(eval.max = 2000, iter.max = 2000, trace = 1),
  rec.years = c(),
 ave.years = max(fit\$data\$years) + (-9:0),
  processNoiseF = FALSE,
  jacobianHScale = 0.5,
 nCatchAverageYears = 20,
)
```

Arguments

fit	a SAM fit	
nYears	Number of years to forecast	
${\tt nlminb.control}$	list of control variables for nlminb	
rec.years	Numeric vector of years to use (to calculate mean and standard deviation) for recruitment. An empty vector will use the recruitment model.	
ave.years	vector of years to average for weights, maturity, M and such. Following ICES guidelines, the default is the last 10 years.	
processNoiseF	Should random walk process noise be used for F?	
	other arguments passed to forecast	
•	Scale step size in jacobian calculation	
nCatchAverageYears		

Number of years to average catch over for finding MSY

References

Albertsen, C. M. and Trijoulet, V. (2020) Model-based estimates of reference points in an age-based state-space stock assessment model. Fisheries Research, 230, 105618. doi: 10.1016/j.fishres.2020.105618

See Also

forecast referencepoints

30 generationlengthplot

fselectivityplot

SAM F-selectivity plot

Description

```
SAM F-selectivity plot
```

Usage

```
fselectivityplot(fit, cexAge = 1, ...)
## S3 method for class 'sam'
fselectivityplot(fit, cexAge = 1, ...)
```

Arguments

fit An object returned from sam.fit

cexAge cex variable giving the size of the age numbers
... extra arguments transferred to barplot and text

Details

Plots selectivity in F.

```
generationlengthplot SAM generation length plot
```

Description

SAM generation length plot

```
generationlengthplot(fit, ...)
## Default S3 method:
generationlengthplot(fit, ...)
## S3 method for class 'samforecast'
generationlengthplot(fit, ...)
## S3 method for class 'hcr'
generationlengthplot(fit, ...)
```

generationlengthtable 31

Arguments

fit the object returned from sam.fit

... extra arguments transferred to plot including the following:

add logical, plotting is to be added on existing plot ci logical, confidence intervals should be plotted cicol color to plot the confidence polygon

Details

Plot of life expectancy

generationlengthtable Generation length table

Description

Generation length table

Usage

```
generationlengthtable(fit, ...)
## Default S3 method:
generationlengthtable(fit, ...)
```

Arguments

fit ..

... extra arguments not currently used

Details

•••

getAllDerivedValues

Update sam fit with additional derived values

Description

Update sam fit with additional derived values

```
getAllDerivedValues(fit)
```

32 getLowerBounds

Arguments

fit sam fit returned by sam.fit

Value

Updated sam fit

getFleet

Extract a fleet observed or predicted value from a fitted object

Description

Extract a fleet observed or predicted value from a fitted object

Usage

```
getFleet(fit, fleet, pred = "FALSE")
```

Arguments

fit A fitted object as returned from sam.fit

fleet The fleet number

pred Should it be predicted value, default is observed

Details

Extract for example the observed or predicted catch at age of fleet "fleet"

Value

A matrix of observed or predicted values for fleet "fleet"

getLowerBounds

Bounds

Description

Bounds

```
getLowerBounds(parameters, conf)
```

getResidualFleets 33

Arguments

parameters initial values for the model in a format similar to what is returned from the defpar

function

conf model configuration in a format similar to what is returned from the defcon

function

Value

a named list

 ${\tt getResidualFleets}$

Extract a list of catch fleets

Description

Extract a list of catch fleets

Usage

```
getResidualFleets(fit, pred = "FALSE")
```

Arguments

fit A fitted object as returned from sam.fit

pred Should it be predicted value, default is observed

Value

A list of matrices of observed or predicted values for catch fleets

getUpperBounds Bounds

Description

Bounds

Usage

```
getUpperBounds(parameters, conf)
```

Arguments

parameters initial values for the model in a format similar to what is returned from the defpar

function

conf model configuration in a format similar to what is returned from the defcon

function

34 hcr

Value

a named list

grad

Calculate gradient of a function

Description

Calculate gradient of a function

Usage

```
grad(
  func,
  x,
  h = abs(1e-04 * x) + 1e-04 * (abs(x) < sqrt(.Machine$double.eps/7e-07)),
  ...
)</pre>
```

Arguments

func	function
x	parameter values
h	step size
	passed to func

Value

gradient vector

hcr

Harvest control rule forecast

Description

The formula below is used to determine a new F based on the previous SSB.

$$F = \begin{cases} F_{cap} & SSB < B_{cap} \\ min\left(F_{target}, \max\left(F_{origin}, (SSB - B_{origin}) \cdot (F_{target} - F_{origin}) / (B_{trigger} - B_{origin})\right)\right) & SSB \ge B_{cap} \end{cases}$$

If $B_{trigger} = B_{origin}$ and $SSB \ge B_{cap}$, F_{target} is always returned.

her 35

Usage

```
hcr(fit, ...)
## S3 method for class 'sam'
hcr(
 fit,
 nYears = 20,
 Ftarget,
 Btrigger,
 Forigin = 0,
 Borigin = 0,
 Fcap = 0,
 Bcap = 0,
 nosim = 10000,
 ave.years = max(fit$data$years) + (-4:0),
 rec.years = numeric(0),
 preForecast = list(),
 currentSSB = FALSE,
)
```

Arguments

fit	A SAM fit
	additional arguments passed to modelforecast
nYears	Number of years to forecast
Ftarget	Target F for high SSB
Btrigger	SSB that triggers the control rule
Forigin	F used for SSB = Borigin
Borigin	Between Blim and Btrigger, F values are selected based on linear interpolation from Forigin to Ftarget
Fcap	F for SSB < Bcap
Всар	SSB for which Fcap is used below
nosim	Number of simulations to do. If NULL a model forecast based on the Laplace approximation is used
ave.years	vector of years to average for weights, maturity, M and such
rec.years	vector of years to use to resample recruitment from. If an empty vector is given, recruitment is based on the fitted model.
preForecast	list of forecast parameters (i.e., fval, fscale, catchval, landval, or nextssb) to use before the HCR
currentSSB	if TRUE, SSB at the begining of the control rule year is used. If FALSE, SSB in the previous year is used. If any propF > 0, currentSSB must be FALSE.

hessian hessian

Value

model forecast using a harvest control rule her model forecast object

See Also

modelforecast

hessian

Calculate hessian of a function

Description

Calculate hessian of a function

Usage

```
hessian(
  func,
  x,
  h = abs(1e-04 * x) + 1e-04 * (abs(x) < sqrt(.Machine$double.eps/7e-07)),
  columns = seq_along(x),
  ...
)</pre>
```

Arguments

```
func function

x parameter values

h step size

columns columns of hessian to calculate

... passed to func
```

Value

jacobian matrix

Note

Could be made more accurate in some cases

ibc 37

ibc

Integrated spline basis for use with formula interface

Description

Integrated spline basis for use with formula interface

Usage

```
ibc(x, df = 3L, knots = NULL, Boundary.knots = range(x), intercept = FALSE)
```

Arguments

x Points to evaluate the basis in

df Degrees of freedom

knots Internal knots. If NULL, they are selected from quantiles of x.

Boundary.knots Boundary knots. Defaults to range of x

intercept Include an intercept in basis?

Value

A spline basis

icesAdviceRule

Forecast with an ICES advice rule

Description

Forecast with an ICES advice rule

```
icesAdviceRule(
    x,
    Fmsy,
    MSYBtrigger,
    Blim,
    nosim = 10000,
    ave.years = max(x$data$years) + (-4:0),
    rec.years = numeric(0),
    preForecast = list(),
    currentSSB = FALSE,
    ...
)
```

38 iibc

Arguments x

Fmsy ICES Fmsy which is used as target F

MSYBtrigger ICES MSYBtrigger below which F is reduced

Blim ICES Blim below which F is set to zero.

nosim Number of simulations to do. If NULL a model forecast based on the Laplace approximation is used

ave.years vector of years to average for weights, maturity, M and such rec.years vector of years to use to resample recruitment from. If an empty vector is given, recruitment is based on the fitted model.

preForecast list of forecast parameters (i.e., fval, fscale, catchval, landval, or nextssb) to use

before the HCR

Fitted assessment model

currentSSB if TRUE, SSB at the begining of the control rule year is used. If FALSE, SSB at

the begining of the previous year is used.

... Other arguments passes to hcr

Value

her object

Warning

The function does not make a short term forecast to see if fishing can continue below Blim.

References

ICES (2021) Advice on fishing opportunities. DOI: 10.17895/ices.advice.7720

See Also

hcr

iibc Double integrated spline basis for use with formula interface

Description

Double integrated spline basis for use with formula interface

```
iibc(x, df = 3L, knots = NULL, Boundary.knots = range(x), intercept = FALSE)
```

Arguments

x Points to evaluate the basis in

df Degrees of freedom

knots Internal knots. If NULL, they are selected from quantiles of x.

Boundary.knots Boundary knots. Defaults to range of x

intercept Include an intercept in basis?

Value

A spline basis

is.whole.positive.number

Function to test if x is ...

Description

Function to test if x is ...

Usage

```
is.whole.positive.number(x, tol = .Machine$double.eps^0.5)
```

Arguments

x number

tol precision

Details

•••

40 jit

jacobian

Calculate jacobian of a function

Description

Calculate jacobian of a function

Usage

```
jacobian(
  func,
  x,
  h = abs(1e-04 * x) + 1e-04 * (abs(x) < sqrt(.Machine$double.eps/7e-07)),
  maxit = 30L,
  tol = 1e-12,
  subset = seq_along(x),
  ...
)</pre>
```

Arguments

```
func function

x parameter values

h step size

maxit maximum number of iterations

tol tolerance

subset subset indices of parameters to calculate jacobian wrt

... passed to func
```

Value

jacobian matrix

jit

Jitter runs

Description

Jitter runs

leaveout 41

Usage

```
jit(fit, nojit = 10, ...)
## S3 method for class 'sam'
jit(
   fit,
   nojit = 10,
   par = defpar(fit$data, fit$conf),
   sd = 0.25,
   ncores = detectCores(),
   ...
)
```

Arguments

fit a fitted model object as returned from sam.fit

nojit a list of vectors. Each element in the list specifies a run where the fleets mentioned are omitted

par initial values to jitter around. The defaule ones are returned from the defpar function

sd the standard deviation used to jitter the initial values (most parameters are on a log scale, so similar to cv)

ncores the number of cores to attemp to use

Details

...

Value

A "samset" object, which is basically a list of sam fits

leaveout run

Description

leaveout run

```
leaveout(
   fit,
   fleet = as.list(2:fit$data$noFleets),
   ncores = detectCores(),
   ...
)
```

42 lifeexpectancyplot

Arguments

fit a fitted model object as returned from sam.fit

fleet a list of vectors. Each element in the list specifies a run where the fleets men-

tioned are omitted

ncores the number of cores to attemp to use

... extra arguments to sam.fit

Details

•••

lifeexpectancyplot SAM life expectancy plot

Description

SAM life expectancy plot

Usage

```
lifeexpectancyplot(fit, atRecruit = TRUE, ...)
## Default S3 method:
lifeexpectancyplot(fit, atRecruit = TRUE, ylimAdd = fit$conf$maxAge, ...)
## S3 method for class 'samforecast'
lifeexpectancyplot(fit, atRecruit = TRUE, ylimAdd = fit$conf$maxAge, ...)
## S3 method for class 'hcr'
lifeexpectancyplot(fit, atRecruit = TRUE, ylimAdd = fit$conf$maxAge, ...)
```

Arguments

fit the object returned from sam.fit

atRecruit If true, show life expectancy given survival until minAge, otherwise show life

expectancy at birth

... extra arguments transferred to plot including the following:

add logical, plotting is to be added on existing plot ci logical, confidence intervals should be plotted cicol color to plot the confidence polygon

ylimAdd values to add when calculating ylim for the plot

Details

Plot of life expectancy

lifeexpectancytable 43

lifeexpectancytable Life expectancy table

Description

Life expectancy table

Usage

```
lifeexpectancytable(fit, atRecruit = TRUE, ...)
## Default S3 method:
lifeexpectancytable(fit, atRecruit = TRUE, ...)
```

Arguments

fit ..

atRecruit If true, show life expectancy given survival until minAge, otherwise show life

expectancy at birth

... extra arguments not currently used

Details

•••

loadConf

Loads a model configuration from a file

Description

Loads a model configuration from a file

Usage

```
loadConf(dat, file, patch = TRUE)
```

Arguments

dat sam data list as returned from the function setup.sam.data

file the file to read the configuration from

patch logical if TRUE missing entries will be automatically filled with default values

Details

function useful loading a model configuration. Such a configuration can be saved via the saveConf function

44 modelDescription

logLik.sam

Log likelihood of sam object

Description

Log likelihood of sam object

Usage

```
## S3 method for class 'sam'
logLik(object, ...)
```

Arguments

object sam fitted object as returned from the sam. fit function

... extra arguments

Details

log likelihood of a sam model run

 ${\tt modelDescription}$

Description of model

Description

Description of model

Usage

```
modelDescription(fit, ...)
```

Arguments

fit returned object from sam.fit

... Additional parameters to be passed to ...

Details

...

modelforecast

Model based forecast function

Description

Model based forecast function Model based forecast function

```
modelforecast(fit, ...)
## S3 method for class 'sam'
modelforecast(
  fit,
  constraints = NULL,
  fscale = NULL,
  catchval = NULL,
  fval = NULL,
  nextssb = NULL,
  landval = NULL,
  nosim = 0,
 year.base = max(fit$data$years),
  ave.years = max(fit\$data\$years) + (-9:0),
  rec.years = c(),
  label = NULL,
  overwriteSelYears = NULL,
  deterministicF = FALSE,
  processNoiseF = FALSE,
  fixedFdeviation = FALSE,
  useFHessian = FALSE,
  resampleFirst = !is.null(nosim) && nosim > 0,
  useModelLastN = TRUE,
  customSel = NULL,
  lagR = FALSE,
  splitLD = FALSE,
  addTSB = FALSE,
  biasCorrect = FALSE,
  returnAllYears = FALSE,
  returnObj = FALSE,
  progress = TRUE,
  estimate = median,
  silent = TRUE,
  newton_config = NULL,
  custom_pl = NULL,
  useNonLinearityCorrection = (nosim > 0 && !deterministicF),
```

```
ncores = 1,
...
```

Arguments

fit SAM model fit

... other variables used by the methods

constraints a character vector of forecast constraint specifications

fscale a vector of f-scales. See details.

catchval a vector of target catches. See details "old specification".

fval a vector of target f values. See details "old specification".

nextssb a vector target SSB values the following year. See details "old specification".

landval a vector of target catches. See details "old specification".

nosim number of simulations. If 0, the Laplace approximation is used for forecasting.

year.base starting year default last year in assessment. Currently it is only supported to

use last assessment year or the year before

ave.years vector of years to average for weights, maturity, M and such

rec.years vector of years to use to resample recruitment from. If the vector is empty, the

stock recruitment model is used.

label optional label to appear in short table

overwriteSelYears

if a vector of years is specified, then the average selectivity of those years is used

(not recommended)

deterministicF option to set F variance to (almost) zero (not recommended)

processNoiseF option to turn off process noise in F

fixedFdeviation

Use a fixed F deviation from target?

useFHessian Use the covariance of F estimates instead of the estimated process covariance

for forecasting?

resampleFirst Resample base year when nosim > 0?

useModelLastN Use last N?

customSel supply a custom selection vector that will then be used as fixed selection in all

years after the final assessment year (not recommended)

lagR if the second youngest age should be reported as recruits

splitLD if TRUE the result is split in landing and discards addTSB if TRUE the total stock biomass (TSB) is added

biasCorrect Do bias correction of reported variables. Can be turned off to reduce running

time (not recommended).

returnAllYears If TRUE, all years are bias corrected. Otherwise, only forecast years are cor-

rected.

return0bj Only return TMB object?

progress Show progress bar for simulations?

estimate the summary function used (typically mean or median) for simulations

silent Passed to MakeADFun. Should the TMB object be silent?

newton_config Configuration for newton optimizer to find F values. See ?TMB::newton for

details. Use NULL for TMB defaults.

custom_pl Parameter list. By default, the parameter list from fit is used.

useNonLinearityCorrection

Should a non linearity correction be added to transformation of logF? See De-

tails - Non-linearity correction.

ncores Number of cores to use if simulating

Details

Function to forecast the model under specified catch constraints. In the forecast, catch constraints are used to set the mean of the log(F) process for each simulation. Therefore, catch constraints are not matched exactly in individual simulations. Likewise, the summary of a specific set of simulations will not match exactly due to random variability. By default, recruitment is forecasted using the estimated recruitment model. If a vector of recruitment years is given, recruitment is forecasted using a log-normal distribution with the same mean and variance as the recruitment in the years given. This is different from the forecast function, which samples from the recruitment estimates. Catch scenarios are specified by a vector of target constraints. The first value determines F in the year after the base year.

Value

an object of type samforecast

Forecast constraints

F based constraints:: Forecasts for F values are specified by the format "F[f,a0-a1]=x" where f is the residual catch fleet and a0-a1 is an age range. For example, "F[2,2-4]=0.3" specifies that the average F for the second fleet over ages 2-4 should be 0.3. If an "*" is added to the target value, the target will be relative to the year before. For example, "F[2,2-4]=0.9*" specifies that the average F for the second fleet over ages 2-4 should be 90 If the fleet is omitted (e.g., F[2-4]), the target is for the total F. If the age range is omitted (e.g., F[2]), the fbar range of the model is used. Likewise, both fleet and age range can be omited (e.g., F=0.3) to specify a value for total F with the range used in the model.

For example:

"F=0.2" Will set the median average total fishing mortality rate to 0.2

"F[1 =0.2"] Will set the median average fishing mortality rate of the first fleet to 0.2

"F[2-4 =0.2"] Will set the median average total fishing mortality rate over ages 2 to 4 to 0.2

"F[3,2-4 =0.2"] Will set the median average fishing mortality rate over ages 2 to 4 for the third fleet to 0.2

Catch/Landing based constraints:: Forecasts for catch and landing values are specified by the format "C[f,a0-a1]=x" for catch and "L[f,a0-a1]" for landings. If the age range is omitted, all modelled ages are used. Otherwise, the format is similar to F based scenarios. If an "*" is added to the target value, the target will be relative to the year before. Further, the catch target for a fleet can be relative to the total by adding "*C" or to another fleet by adding "*C[f]" where f is the fleet number. The same age range will always be used. Likewise, relative landing targets can be specified using "*", "*L", or "*L[f]" for targets relative to last year, the total, or fleet f, respectively.

For example:

"C=100000" Will scale F such that the total predicted catch is 100000

"C[1 =100000"] Will scale F such that the predicted catch of the first fleet is 100000

"C[2-4 = 100000"] Will scale F such that the total predicted catch for ages 2 to 4 is 100000

"C[3,2-4 =100000"] Will scale F such that the predicted catch for ages 2 to 4 in the third fleet is 100000

"L=100000" Will scale F such that the total predicted landing is 100000

"L[1 =100000"] Will scale F such that the predicted landing of the first fleet is 100000

"L[2-4 =100000"] Will scale F such that the total predicted landing for ages 2 to 4 is 100000

"L[3,2-4 =100000"] Will scale F such that the predicted landing for ages 2 to 4 in the third fleet is 100000

Next year's SSB/TSB based constraints:: Forecasts for spawning stock biomass (SSB) and total stock biomass (TSB) values are specified by the format "SSB[a0-a1]=x" for SSB and "TSB[a0-a1]" for TSB. For setting F in year y, the relevant biomass for year y+1 is predicted for the constraint. If spawning is not at the beginning of the year, F is assumed to be the same for year y and y+1 in the prediction. The format is similar to catch/landing based scenarios. However, fleets have no effect. If an age range is omitted, the full age range of the model is used. If an "*" is added to the target value, the target will be relative to the year before. That is, when setting F in year y, the predicted biomass in year y+1 will be relative to the biomass in year y-1. Note that since SSB and TSB used for catch constraints are predicted, the input constraint will differ from the output SSB and TSB estimates due to process variability.

For example:

SSB=200000 Will scale F such that the predicted SSB at the beginning of the next year is 200000 **SSB[3-9** =200000] Will scale F such that the predicted SSB for ages 3 to 9 at the beginning of the next year is 200000

TSB=200000 Will scale F such that the predicted TSB at the beginning of the next year is 200000 **TSB[3-9** =200000] Will scale F such that the predicted TSB for ages 3 to 9 at the beginning of the next year is 200000

Harvest control rule based constraints:: Harvest control rules can be specified for forecasts using the format "HCR=x~y" where x is the target and y is the biomass trigger (see ?hcr for full details on the form of the harvest control rule). Further, the target can be specified as an F target ("HCR=xF~y"), catch target ("HCR=xC~y"), or landing target ("HCR=xL~y"). Likewise the trigger can either be for SSB ("HCR=x~ySSB") or TSB ("HCR=x~yTSB"). Age ranges can be set for both triggers and targets and a fleet can be set for the target. The notation and defaults are similar to the F based and SSB/TSB based constraints, respectively. When setting F in year y, the projected biomass in year y is used by default. To use the (at this time known) biomass in a previous year, a time lag can be specified. To specify a time lag of, e.g., 1 year

for SSB the format is "HCR=x~ySSB-1". Finally, the origin and cap for the HCR can be set using "HCR[FO=a,FC=b,BO=d,BC=e]=x~y", where FO is the F (or catch or landing) value at origin, BO is the biomass at origin, FC is the F (or catch or landing) value when the HCR is capped and BC is the biomass at which the HCR is capped. See ?hcr for further details on the shape of the HCR. For a HCR similar to the ICES advice rule, the specification is on the form "HCR[BC=Blim] = fmsy~MSYBtrigger". Note that, unlike an ICES advice rule, the HCR does not do a forecast to determine if fishing can continue below Blim.

For example:

- **HCR=0.9~100000** Will apply a harvest control rule with an F target of 0.9 and a biomass trigger of 100000 on SSB
- **HCR=10000C~100000** Will apply a harvest control rule with a catch target of 10000 and a biomass trigger of 100000 on SSB
- **HCR=0.9~100000SSB** Will apply a harvest control rule with an F target of 0.9 and a biomass trigger of 100000 on SSB
- **HCR=0.9F[1,2-4** ~100000SSB] Will apply a harvest control rule with an F target on the first fleet ages 2-4 of 0.9 and a biomass trigger of 100000 on SSB
- **HCR=0.9~100000TSB[0-4**] Will apply a harvest control rule with an F target of 0.9 and a biomass trigger of 100000 on TSB for ages 0 to 4
- **HCR[FC=1e-9,BC=20000** =0.9~100000] Will apply a harvest control rule with an F target of 0.9 and a biomass trigger of 100000 on SSB where biomass values below 20000 will give an F of 1e-9
- **HCR[FO=0,BO=30000** =0.9~100000] Will apply a harvest control rule with an F target of 0.9 and a biomass trigger of 100000 on SSB where the slope on which F is reduced goes to zero F at a biomass of 30000

Combining constraints:: Constraints for different fleets can be combined by "&". For example, "F[2-4]=0.5 & C[2]=10000" specifies that total Fbar over ages 2-4 should be 0.5 while the catch for the second residual catch fleet should be 10,000t. The constraints cannot affect within-fleet selectivity. Therefore, a fleet can at most have one constraint per year, and the total number of constraints cannot exceed the number of catch fleets. That is, if a constraint is given for the sum of fleets, there must be at least one fleet without any constraints. For fleets where no constraints are given, a constraint is set to keep their relative Fs constant.

Values relative to previous year:: Catch constraints specified as specific values are inherently different from catch constraints specified as relative values, even if they lead to the same F. Catch constraints specified as relative values will propagate the uncertainty in, e.g, F from previous years whereas constraints specified as specific values will not. This is different from the forecast function where, for example, a forecast using fval is the same as a forecast using fscale, if they lead to the same F.

##'

Process variability:: In the forecast, constraints are used to set the predicted F value in year y based on information available until year y-1. Therefore, constraints using predicted values for year y, such as catch, will not be matched exactly by the realized catch due to process variability in F, N, biological processes and catch itself.

Non-linearity correction

In the model forecasts, constraints are calculated to set the mean of the log(F) process, corresponding to the median F-at-ages. Typically, the constraints are non-linear functions of log(F)-at-age. Therefore, when stochasticity is added to log(F) (i.e., deterministicF=FALSE), target values will correspond to a transformation of the median, and not the median of the transformation. For example, a target for the average fishing mortality (Fbar) will correspond to the average of the median F at age, which will be different from the median Fbar.

The "useNonLinearityCorrection" argument can be used to shift the target from a function of the mean log(F) (median F) towards the log-mean of the function of log(F), which is approximately the median of the function of log(F).

Old specification

It is also possible to specify forecast constraints in a way similar to the forecast function. There are four ways to specify a scenario. If e.g. four F values are specified (e.g. fval=c(.1,.2,.3,4)), then the first value is used in the year after the last assessment year (base.year + 1), and the three following in the three following years. Alternatively F's can be specified by a scale, or a target catch. Only one option can be used per year. So for instance to set a catch in the first year and an F-scale in the following one would write catchval=c(10000,NA,NA,NA), fscale=c(NA,1,1,1). If only NA's are specified in a year, the F model is used for forecasting. The length of the vector specifies how many years forward the scenarios run. Unlike the forecast function, no value should be given for the base year. Internally, the old specification is translated such that "fval=x" becomes "F=x", "fscale=x" becomes "F=x*", "catchval=x" becomes "C=x", "nextssb=x" becomes "SSB=x", and "landval=x" becomes "L=x".

Forecasts using Laplace approximation or simulations

Forecasts can be made using either a Laplace approximation projection (nosim=0) or simulations (nosim > 0). When using the Laplace approximation, the most likely projected trajectory of the processes along with a confidence interval is returned. In contrast, simulation based forecasts will return individual simulated trajectories and summarize using the function given as the estimate argument along with an interval covering 95

Warnings

Long term forecasts with random walk recruitment can lead to unstable behaviour and difficulties finding suitable F values for the constraints. If no suitable F value can be found, an error message will be shown, and F values will be NA or NaN. Likewise, forecasts leading to high F values in some years (or large changes from one year to another) may cause problems for the optimization as they will be used as starting values for the next years. Since the model works on log space, all target values should be strictly positive. Values too close to zero may cause problems.

See Also

forecast

modeltable 51

modeltable

model table

Description

model table

Usage

```
modeltable(fits, ...)
## S3 method for class 'sam'
modeltable(fits, ...)
## S3 method for class 'samset'
modeltable(fits, ...)
```

Arguments

fits A sam fit as returned from the sam.fit function, or a collection c(fit1, fit2, ...) of

such fits

.. extra arguments not currently used

Details

•••

modelVersionInfo

Description of model

Description

Description of model

Usage

```
modelVersionInfo(fit, ...)
```

Arguments

fit returned object from sam.fit

... Additional parameters to be passed to ...

Details

Writes a string to install the version of the package which was used to run the model.

52 MSE

mohn

Mohn's rho calculation

Description

Mohn's rho calculation

Usage

```
mohn(fits, what = NULL, lag = 0, ...)
## S3 method for class 'samset'
mohn(fits, what = NULL, lag = 0, ...)
```

Arguments

fits a samset object as returned from the retro function.

what a function computing the quantity to calculate Mohn's rho for (default NULL

computes Fbar, SSB, and R).

lag applied to fits and reference fit.

... extra arguments

Details

•••

MSE

Management strategy evaluation using SAM models

Description

Management strategy evaluation using SAM models

```
MSE(
   OM,
   EM,
   nYears,
   AdviceForecastSettings,
   AdviceYears = 1,
   AdviceLag = 0,
   initialAdvice = NA,
   implementationError = function(x) x,
   knotRange = 3,
```

nobs.sam 53

```
intermediateFleets = numeric(0),
   OMselectivityFixed = FALSE,
   ...
)
```

Arguments

OM sam.fit that will work as operating model
EM sam.fit that will work as estimation model

nYears Number of years to run simulation

AdviceForecastSettings

Settings to do forecast that determines advice

AdviceYears Number of years advice given at a time. How advice is given is determined by

AdviceForecastSettings

AdviceLag Lag between assessment and advice initialAdvice Advice in the first AdviceLag years

implementationError

Function to add implementation error (i.e, transform advice to target catch)

knotRange Range of spline knot values to try

intermediateFleets

Fleets that are available in the (first) intermediate year

OMselectivityFixed

Fix selectivity in OM?

... arguments passed on to addSimulatedYears

Value

a list with MSE result

nobs.sam

Extract number of observations from sam object

Description

Extract number of observations from sam object

Usage

```
## S3 method for class 'sam'
nobs(object, ...)
```

Arguments

object sam fitted object as returned from the sam. fit function

... extra arguments

54 nscodConf

Details

...

nscodConf

nscodConf

Description

nscodConf

Usage

```
data("nscodConf")
```

Format

The format is: \$ minAge \$ maxAge \$ maxAgePlusGroup \$ keyLogFsta \$ corFlag \$ keyLogFpar \$ keyQpow \$ keyVarF \$ keyVarLogN \$ keyVarObs \$ stockRecruitmentModelCode \$ noScaledYears \$ keyScaledYears \$ keyParScaledYA \$ fbarRange

Details

••

Source

•••

References

...

Examples

```
data(nscodConf)
## maybe str(nscodConf) ; plot(nscodConf) ...
```

nscodData 55

 ${\sf nscodData}$

nscodData

Description

nscodData

Usage

```
data("nscodData")
```

Format

The format is: \$ noFleets \$ fleetTypes \$ sampleTimes \$ noYears \$ years \$ nobs \$ idx1 \$ idx2 \$ aux \$ logobs \$ propMat \$ stockMeanWeight \$ catchMeanWeight \$ natMor \$ landFrac \$ disMeanWeight \$ landMeanWeight \$ propF \$ propM

Details

...

Source

...

References

•••

Examples

```
data(nscodData)
## maybe str(nscodData) ; plot(nscodData) ...
```

nscodParameters

nscodParameters

Description

nscodParameters

```
data("nscodParameters")
```

56 ntable

Format

The format is: List of 14 $\$ logFpar $\$ logQpow $\$ logSdLogFsta $\$ logSdLogN $\$ logSdLogObs $\$ rec_loga $\$ rec_logb $\$ itrans_rho $\$ logScale $\$ logScaleSSB $\$ logPowSSB $\$ logSdSSB $\$ logF $\$ logN

Details

...

Source

...

References

••

Examples

```
data(nscodParameters)
## maybe str(nscodParameters); plot(nscodParameters) ...
```

ntable

N table

Description

N table

Usage

```
ntable(fit, ...)
## S3 method for class 'sam'
ntable(fit, ...)
```

Arguments

fit ..

.. extra arguments not currently used

Details

...

obscorrplot 57

obscorrplot

Plots the estimated correlation matrices by fleet.

Description

Plots the estimated correlation matrices by fleet.

Usage

```
obscorrplot(fit, ...)
## S3 method for class 'sam'
obscorrplot(fit, ...)
```

Arguments

fit the object returned from sam.fit
... extra arguments to plot

obscov

Extract observation covariance matrices from a SAM fit

Description

Extract observation covariance matrices from a SAM fit

Usage

```
obscov(fit, corr = FALSE, ...)
## S3 method for class 'sam'
obscov(fit, corr = FALSE, ...)
## S3 method for class 'samset'
obscov(fit, corr = FALSE, ...)
```

Arguments

```
fit the object returned from sam.fit
corr if TRUE return correlation matrices rather than covariances
extra arguments not currently used
```

Value

a list of matrices

58 partable

parplot

SAM parameter plot

Description

SAM parameter plot

Usage

```
parplot(fit, cor.report.limit = 0.95, ...)
## S3 method for class 'sam'
parplot(fit, cor.report.limit = 0.95, ...)
## S3 method for class 'samset'
parplot(fit, cor.report.limit = 0.95, ...)
```

Arguments

```
fit the object returned from sam.fit

cor.report.limit

correlations with absolute value > this number is reported in the plot

extra arguments transferred to plot
```

Details

Plot of all estimated model parameters (fixed effects). Shown with confidence interval.

partable

parameter table

Description

parameter table

Usage

```
partable(fit, ...)
## S3 method for class 'sam'
partable(fit, ...)
```

Arguments

```
fit ... extra arguments not currently used
```

plot.hcr 59

Details

•••

plot.hcr

Plot hcr object

Description

Plot her object

Usage

```
## S3 method for class 'hcr'
plot(x, ...)
```

Arguments

x output from the hcr function

... extra arguments

Details

•••

plot.sam

Plot sam object

Description

Plot sam object

Usage

```
## S3 method for class 'sam' plot(x, ...)
```

Arguments

x fitted object as returned from the sam. fit function.

extra arguments (not possible to use add=TRUE — instead collect to a list of fits using e.g the c(...), and then plot that collected object).

Details

gives a 3 plot overview plot og ssb, fbar, and recruits. These plots are available individually via the functions ssbplot, fbarplot, and recplot.

60 plot.samres

plot.samforecast

Plot samforecast object

Description

Plot samforecast object

Usage

```
## S3 method for class 'samforecast' plot(x, ...)
```

Arguments

x fitted object as returned from the sam. fit function

... extra arguments

Details

•••

plot.samres

Plot sam residuals

Description

Plot sam residuals

Usage

```
## S3 method for class 'samres'
plot(x, type = "bubble", ...)
```

Arguments

```
x an object of type 'samres' as returned from functions residuals.sam or procres.type either "bubble" (default) or "summary"extra arguments
```

Details

In the "bubble" type red indicate negative residuals and blue positive. The area of the circles scales with the absolute size of the residuals.

plot.samset 61

Examples

```
## Not run:
data(nscodData)
data(nscodConf)
data(nscodParameters)
fit <- sam.fit(nscodData, nscodConf, nscodParameters)
par(ask=FALSE)
plot(residuals(fit))
## End(Not run)</pre>
```

plot.samset

Plot sam object

Description

Plot sam object

Usage

```
## S3 method for class 'samset' plot(x, ...)
```

Arguments

x fitted object as returned from the sam. fit function.

... extra arguments

Details

...

plot.samypr

Plot sam object

Description

Plot sam object

```
## S3 method for class 'samypr' plot(x, ...)
```

62 plotby

Arguments

```
x ...extra arguments
```

Details

...

plotby

Plot by one or two

Description

Plot by one or two

Usage

```
plotby(
  x = NULL
 y = NULL,
 z = NULL,
  x.line = NULL,
 y.line = NULL,
  z.line = NULL,
 by = NULL,
  bubblescale = 1,
  x.common = !is.null(x),
 y.common = !is.null(y),
  z.common = !is.null(z),
 xlab = NULL,
 ylab = NULL,
 xlim = NULL,
 ylim = NULL,
 zmax = NULL,
  axes = TRUE,
)
```

Arguments

```
x numeric vector of points to be plotted
y numeric vector of points to be plotted
z numeric vector of points to be plotted
x.line numeric vector of points of line to be added
y.line numeric vector of points of line to be added
```

plotit 63

z.line	numeric vector of points of line to be added
by	vector or two column matrix to create sub sets from
bubblescale	scaling of bubble size
x.common	logical: use same x-axis for all plots
y.common	logical: use same y-axis for all plots
z.common	logical: use same z-axis for all plots
xlab	normal graphical parameter
ylab	normal graphical parameter
xlim	normal graphical parameter
ylim	normal graphical parameter
zmax	internally used to scale bubbles similarly
axes	normal graphical parameter
	additional graphical parameters

Details

Function used for splitting plots e.g. used to plot residuals

Examples

```
exdat<-expand.grid(age=1:5, year=1950:2016, fleet=1:3)
exdat$perfectres<-rnorm(nrow(exdat))
attach(exdat)
par(ask=FALSE)
plotby(year,age,perfectres, by=fleet)
detach(exdat)</pre>
```

plotit

Plot helper

Description

Plot helper

```
plotit(fit, what, ...)
## S3 method for class 'sam'
plotit(
   fit,
   what,
   x = fit$data$years,
   ylab = what,
```

64 plotit

```
xlab = "Years",
  ex = numeric(0),
  trans = function(x) x,
  add = FALSE,
  ci = TRUE,
  cicol = gray(0.5, alpha = 0.5),
  addCI = NA,
  drop = 0,
  unnamed.basename = "current",
 xlim = NULL,
 ylim = NULL,
 ylimAdd = NA,
)
## S3 method for class 'samset'
plotit(
  fit,
 what,
  x = fit data years,
 ylab = what,
  xlab = "Years",
  ex = numeric(0),
  trans = function(x) x,
  add = FALSE,
 ci = TRUE,
  cicol = gray(0.5, alpha = 0.5),
  addCI = rep(FALSE, length(fit)),
  drop = 0,
  unnamed.basename = "current",
  xlim = NULL,
)
## S3 method for class 'samforecast'
plotit(
 fit,
 what,
  x = fit$data$years,
 ylab = what,
 xlab = "Years",
  ex = numeric(0),
  trans = function(x) x,
  add = FALSE,
  ci = TRUE,
  cicol = gray(0.5, alpha = 0.5),
  addCI = NA,
  drop = 0,
```

plotit 65

```
unnamed.basename = "current",
  xlim = NULL,
  ylim = NULL,
)
## S3 method for class 'hcr'
plotit(
  fit,
  what,
  x = fit$data$years,
  ylab = what,
  xlab = "Years",
  ex = numeric(0),
  trans = function(x) x,
  add = FALSE,
  ci = TRUE,
  cicol = gray(0.5, alpha = 0.5),
  addCI = NA,
  drop = 0,
  unnamed.basename = "current",
  xlim = NULL,
)
```

Arguments

fit	the fitted object from sam.fit of a set of such fits c(fit1,fit2)
what	quoted name of object to extract
	extra arguments transferred to plot
X	x-values
ylab	label on y-axis
xlab	label on x-axis
ex	extra y's to make room for
trans	function to transform values by
add	logical, plotting is to be added on existing plot
ci	logical, confidence intervals should be plotted
cicol	color to plot the confidence polygon
addCI	A logical vector indicating if confidence intervals should be plotted for the added
	fits.
drop	number of years to be left unplotted at the end.
unnamed.basename	
	the name to assign an unnamed basefit
xlim	xlim for the plot
ylim	ylim for the plot
ylimAdd	values to add when calculating ylim for the plot

66 predstdplot

Details

The basic plotting used bu many of the plotting functions (e.g. ssbplot, fbarplot ...)

predstdplot

Prediction-standard deviation plot

Description

Prediction-standard deviation plot

Usage

```
predstdplot(
   fit,
   fleet,
   age = NULL,
   type = "log",
   ylim = NULL,
   ylab = "Standard deviation",
   xlab = "Prediction",
   main = "Pred-std relation",
   ...
)
```

Arguments

fit	A sam fit object returned from sam.fit.
fleet	Fleet number to plot relation between prediction and standard deviation.
age	Relation at age. Only used in cases with more than one relation within the same fleet.
type	Either 'log' or 'natural': relation for observations on a log or natural scale.
ylim	Optional, sent to plot
ylab	Optional, sent to plot
xlab	Optional, sent to plot
main	Optional, sent to plot
	Sent to plot

Details

Plot the relation between observation prediction and standard deviation.

print.her 67

print.hcr

Print hcr object

Description

Print her object

Usage

```
## S3 method for class 'hcr'
print(x, ...)
```

Arguments

x a sam her object as returned by her

... extra arguments

Details

prints the HCR forecast

print.sam

Print sam object

Description

Print sam object

Usage

```
## S3 method for class 'sam'
print(x, ...)
```

Arguments

x the fitted object as returned from the sam. fit function

... extra arguments

Details

prints the log-likelihood and the main convergence criteria

68 print.samforecast

print.samcoef

Print samcoef object

Description

Print samcoef object

Usage

```
## S3 method for class 'samcoef'
print(x, ...)
```

Arguments

x samcoef object as returned from the coef. sam function

... extra arguments

print.samforecast

Print samforecast object

Description

Print samforecast object

Usage

```
## S3 method for class 'samforecast' print(x, ...)
```

Arguments

x an object as returned from the forecast function

... extra arguments

Details

•••

print.samres 69

print.samres

Print samres object

Description

Print samres object

Usage

```
## S3 method for class 'samres'
print(x, ...)
```

Arguments

x a sam residual object as returned from either residuals. sam or procres

... extra arguments

Details

prints the residuals as a data.frame

print.samset

Print samset object

Description

Print samset object

Usage

```
## S3 method for class 'samset' print(x, ...)
```

Arguments

x a list of sam models

... extra arguments

Details

...

print.samypr

Print samypr object

Description

Print samypr object

Usage

```
## S3 method for class 'samypr' print(x, ...)
```

Arguments

x an object as returned from the ypr function

... extra arguments

Details

...

```
print.sam_referencepoints
```

Print referencepoint object

Description

Print referencepoint object

Usage

```
## S3 method for class 'sam_referencepoints' print(x, tables = c("F", "Biomass", "Yield"), digits = 4, format = "f", ...)
```

Arguments

x a sam referencepoint object as returned by referencepoints

tables tables to print

digits number of digits to print format printing format for numbers

... extra arguments

Details

prints the F reference point table

procres 71

procres

Compute process residuals (single joint sample)

Description

Compute process residuals (single joint sample)

Usage

```
procres(fit, map = fit$obj$env$map, ...)
```

Arguments

```
fit the fitted object as returned from the sam. fit function map map from original fit
... extra arguments (not currently used)
```

Details

Single joint sample residuals of log(F) and log(N)

Value

an object of class samres

qtable

table of survey catchabilities

Description

```
table of survey catchabilities
```

Usage

```
qtable(fit, ...)
```

Arguments

fit ... extra arguments not currently used

Details

...

72 qtableplot

qtable.sam

table of survey catchabilities

Description

table of survey catchabilities

Usage

```
## S3 method for class 'sam'
qtable(fit, ...)
```

Arguments

. . .

fit A sam fit as returned from the sam.fit function

extra arguments not currently used

qtableplot

plot survey catchabilities

Description

```
plot survey catchabilities plot survey catchabilities
```

Usage

```
qtableplot(qt, exp = FALSE)
## S3 method for class 'samqtable'
qtableplot(qt, exp = FALSE)
```

Arguments

qt An object of class 'samqtable' as returned from qtable

exp if true return on natural scale rather than log

read.data.files 73

read.data.files Read all standard data SAM files and return a list as created by 'setup.sam.data'

Description

Read all standard data SAM files and return a list as created by 'setup.sam.data'

Usage

```
read.data.files(dir = ".")
```

Arguments

dir

Directory to read from

Details

Read all standard SAM data files

Value

list (as created by 'setup.sam.data')

read.ices

Function to read ICES/CEFAS data files and validate if input makes sense

Description

Function to read ICES/CEFAS data files and validate if input makes sense

Usage

```
read.ices(filen)
```

Arguments

filen

The filename

Details

First two lines are ignored and can be used for comments. Can read formats 1 full, 2 row, 3 scalar, and 5 column

Tests: Formatcode is valid, years and ages are pos. integers minimum <= maximum for years and ages number of rows and coulmns match year and age ranges data contains only numbers.

Returns: A validated data matrix.

74 read.table.nowarn

read.surveys

Function to read ices survey format

Description

Function to read ices survey format

Usage

```
read.surveys(filen)
```

Arguments

filen

the file

Details

...

read.table.nowarn

Function to supress incomplete final line warning

Description

Function to supress incomplete final line warning

Usage

```
read.table.nowarn(...)
```

Arguments

... arguments

Details

...

recplot 75

recplot

SAM Recruits plot

Description

SAM Recruits plot

Usage

```
recplot(fit, lagR = FALSE, ...)
## S3 method for class 'sam'
recplot(fit, lagR = FALSE, ...)
## S3 method for class 'samset'
recplot(fit, lagR = FALSE, ...)
## S3 method for class 'samforecast'
recplot(fit, lagR = FALSE, ...)
## S3 method for class 'hcr'
recplot(fit, lagR = FALSE, ...)
```

Arguments

fit the object returned from sam.fit

lagR use the age after the youngest as R

... extra arguments transferred to plot including the following: add logical, plotting is to be added on existing plot ci logical, confidence intervals should be plotted cicol color to plot the confidence polygon

Details

Plot of numbers of recruits (youngest age class)

rectable

Recruit table

Description

Recruit table

76 reduce

Usage

```
rectable(fit, lagR = FALSE, ...)
## Default S3 method:
rectable(fit, lagR = FALSE, ...)
```

Arguments

fit ..

 $\begin{tabular}{lll} lagR & use the age after the youngest as R \\ \dots & extra arguments not currently used \\ \end{tabular}$

Details

•••

reduce

reduce helper function to reduce data

Description

reduce helper function to reduce data

Usage

```
reduce(data, year = NULL, fleet = NULL, age = NULL, conf = NULL)
```

Arguments

data a data object as returned by the function setup.sam.data

year a vector of years to be excluded.

fleet a vector of fleets to be excluded.

age a vector of ages fleets to be excluded.

conf an optional corresponding configuration to be modified along with the data

change. Modified is returned as attribute "conf"

Details

When more than one vector is supplied they need to be of same length, as only the pairs are excluded

reference points 77

referencepoints

Estimate reference points

Description

Estimate reference points

```
referencepoints(
  fit,
 nYears,
 Fsequence,
  aveYears,
  selYears,
  SPRpercent,
  catchType,
 MSYreduction,
  newtonSteps = 3,
 optN = 100,
  jacobianHScale = 0.5,
)
## S3 method for class 'sam'
referencepoints(
  fit,
 nYears = 100,
 Frequence = seq(0, 4, len = 200),
 aveYears = max(fit$data$years) + (-9:0),
  selYears = max(fit$data$years),
  SPRpercent = c(0.35),
  dYPRpercent = c(0.1),
 B0percent = c(0.2),
  catchType = "catch",
 MSYreduction = c(0.05),
  newtonSteps = 3,
  optN = 20,
  jacobianHScale = 0.5,
  fixRP = c(),
 RecCorrection = "median",
 biasCorrect = FALSE,
 nlminb.control = list(eval.max = 1000, iter.max = 1000),
)
```

78 referencepoints

Arguments

fit an object to calculate reference points for

nYears Number of years to use in per-recruit calculations

Fsequence Sequence of F values used to report per-recruit and equilibrium values

aveYears Vector of year indices used to calculate average natural mortality, weights, etc.

Following ICES guidelines, the default is the last 10 years (starting at 0)

selYears Vector of year indices used to calculate selectivity (starting at 0)

SPRpercent Vector of x values for F[x * 100%] reference points. Default is 0.35.

catchType Catch type used: (total) catch, landings, discard.

MSYreduction Vector of proportions for MSY ranges. Default is 0.05 giving an MSY range

corresponding to no more than a 5% yield reduction.

newtonSteps Number of additional Newton steps at the end of the reference point optimiza-

tion.

optN N used for numerical optimizers to find equilibrium biomass

jacobianHScale Scale step size in jacobian calculation

... not used

dYPRpercent Defunct

B0percent Defunct

fixRP Defunct

RecCorrection Defunct

biasCorrect Defunct

nlminb.control Defunct

Value

a sam_referencepoints fit

References

Albertsen, C. M. and Trijoulet, V. (2020) Model-based estimates of reference points in an age-based state-space stock assessment model. Fisheries Research, 230, 105618. doi: 10.1016/j.fishres.2020.105618

See Also

forecastMSY

refit 79

refit

Re-fit a model from stockassessment.org

Description

Re-fit a model from stockassessment.org

Usage

```
refit(fit, newConf, startingValues, ...)
```

Arguments

fit a sam fit or the name of a fit from stockassessment.org

newConf list changes to the configuration

startingValues list of parameter values to use as starting values

... Arguments passed to sam.fit

Value

A new sam fit

residuals.sam

Extract residuals from sam object

Description

Extract residuals from sam object

Usage

```
## S3 method for class 'sam'
residuals(object, discrete = FALSE, ...)
```

Arguments

object sam fitted object as returned from the sam. fit function

discrete logical if model contain discrete observations
... extra arguments for TMB's oneStepPredict

Details

one-observation-ahead quantile residuals are calculated

•••

80 rmaxplot

retro

retro run

Description

retro run

Usage

```
retro(fit, year = NULL, ncores = detectCores(), ...)
## S3 method for class 'sam'
retro(fit, year = NULL, ncores = detectCores(), ...)
```

Arguments

fit

a fitted model object as returned from sam.fit

year

either 1) a single integer n in which case runs where all fleets are reduced by 1, 2, ..., n are returned, 2) a vector of years in which case runs where years from and later are excluded for all fleets, and 3 a matrix of years were each column is a fleet and each column corresponds to a run where the years and later are

excluded.

ncores

the number of cores to attempt to use

... extra arguments to sam.fit

Details

...

rmaxplot

SAM rmax plot

Description

SAM rmax plot

```
rmaxplot(fit, ...)
## Default S3 method:
rmaxplot(fit, ...)
## S3 method for class 'samforecast'
rmaxplot(fit, ...)
```

rmaxtable 81

```
## S3 method for class 'hcr'
rmaxplot(fit, ...)
```

Arguments

fit the object returned from sam.fit

extra arguments transferred to plot including the following: add logical, plotting is to be added on existing plot ci logical, confidence intervals should be plotted

cicol color to plot the confidence polygon

Details

Plot of life expectancy

rmaxtable

rmax table

Description

rmax table

Usage

```
rmaxtable(fit, ...)
## Default S3 method:
rmaxtable(fit, ...)
```

Arguments

fit ..

... extra arguments not currently used

Details

•••

82 runwithout

rmvnorm

rmvnorm helper function to draw multivariate normal samples

Description

rmvnorm helper function to draw multivariate normal samples

Usage

```
rmvnorm(n = 1, mu, Sigma, pivot = FALSE)
```

Arguments

n the number of samples.

mu the mean vector.

Sigma a positive-definite symmetric matrix specifying the covariance matrix.

pivot Do pivot in chol?

Details

Generates samples via the Cholesky decomposition, which is less platform dependent than eigenvalue decomposition.

Value

If n = 1 a vector of the same length as mu, otherwise an n by length(mu) matrix with one sample in each row.

runwithout

runwithout helper function

Description

runwithout helper function

```
runwithout(fit, year, fleet, ...)
## S3 method for class 'sam'
runwithout(fit, year = NULL, fleet = NULL, map = fit$obj$env$map, ...)
```

Arguments

fit a fitted model object as returned from sam.fit

year a vector of years to be excluded. When both fleet and year are supplied they need to be of same length, as only the pairs are excluded

fleet a vector of fleets to be excluded. When both fleet and year are supplied they need to be of same length, as only the pairs are excluded

... extra arguments to sam.fit

map map to use

Details

•••

sam.fit

Fit SAM model

Description

Fit SAM model

```
sam.fit(
  data,
  conf,
  parameters,
  newtonsteps = 3,
  rm.unidentified = FALSE,
  run = TRUE,
  lower = getLowerBounds(parameters, conf),
  upper = getUpperBounds(parameters, conf),
  sim.condRE = TRUE,
  ignore.parm.uncertainty = FALSE,
  rel.tol = 1e-10,
  eval.max = 2000,
  iter.max = 1000,
  penalizeSpline = FALSE,
  fullDerived = FALSE,
  pre.clean = TRUE,
 check.parameters = TRUE,
)
```

Arguments

data data for the sam model as returned from the setup.sam.data function

conf model configuration which can be set up using the defcon function and then

modified either directly in R or by saving it to a text file using the function saveConf, modifying the text file, and then reading the configuration from the textfile using the function loadConf. For more details about the configuration

see details.

parameters initial values which can be set up using the defpar function and then modified.

newtonsteps optional extra true newton steps

rm.unidentified

option to eliminate unidentified model parameters based on gradient in initial

value (somewhat experimental)

run if FALSE return AD object without running the optimization

lower named list with lower bounds for optimization (only met before extra newton

steps)

upper named list with upper bounds for optimization (only met before extra newton

steps)

sim.condRE logical with default TRUE. Simulated observations will be conditional on esti-

mated values of F and N, rather than also simulating F and N forward from their

initial values.

ignore.parm.uncertainty

option passed to TMB:::sdreport reported uncertainties will not include fixed

effect parameter uncertainties

rel. tol option passed to stats:::nlminb sets the convergence criteria

eval.max option passed to stats:::nlminb sets the maximum number of function evalua-

tions

iter.max option passed to stats:::nlminb sets the maximum number of iterations

penalizeSpline Add penalization to spline recruitment?

fullDerived Report all derived values?

pre. clean Should a pre cleaning of data be done?

check.parameters

Should parameters be checked in TMB?

... extra arguments to MakeADFun

Details

The model configuration object conf is a list of different objects defining different parts of the model. The different elements of the list are:

\$minAge: A single integer defining the the lowest age class in the assessment.

\$maxAge: A single integer defining the highest age class in the assessment.

\$maxAgePlusGroup: Is last age group considered a plus group (1 yes, or 0 no).

\$keyLogFsta: A matrix of integers. The number of rows is equal to the number of fleets and the number of columns is equal to the number of age classes. The matrix describes the coupling of the fishing mortality states (the first rows are the catch fleet without effort). '-1' is used for entries where no fishing mortality applies (e.g. age groups in survey fleets, or unobserved age groups). For the valid entries consecutive integers starting at zero must be used, because they are used as indices in the corresponding state vector. If the same number is used for two fleet-age combinations, then the fishing mortality for those are assumed equal (linked to the same state).

- **\$corFlag:** An integer vector to specify the correlation structure of log-scale of fishing mortality increments (0 independent, 1 compound symmetry, or 2 AR(1)). The length of the vector is equal to the number of catch fleets without effort information.
- **\$keyLogFpar:** A matrix of integers. The number of rows is equal to the number of fleets and the number of columns is equal to the number of age classes. The matrix describes the coupling of survey catchability parameters (so only used for survey fleets). '-1' is used for entries where catchability should not be specified (e.g. fleet age groups combinations where fishing mortality is specified above, or unobserved fleet age group combinations). For the valid entries consecutive integers starting at zero must be used, because they are used as indices in the corresponding parameter vector. If the same number is used for two age classes, then the catchability for those age classes are assumed equal (linked to the same parameter).
- **\$keyQpow:** A matrix of integers. The number of rows is equal to the number of fleets and the number of columns is equal to the number of age classes. The matrix describes the coupling of density dependent catchability power parameters. This can only be applied to fleets age combinations where a catchability is defined. '-1' is used for entries where this cannot be applied (e.g. fleet age groups combinations where fishing mortality is specified above, or unobserved fleet age group combinations). '-1' is also used to specify that density dependent catchability power parameters is turned off (the most common setup). For entries where density dependent catchability power parameter is to be estimates entries consecutive integers starting at zero must be used. If the same number is used for two age classes, then the density dependent catchability power parameter for those age classes are assumed equal (linked to the same parameter).
- **\$keyVarF:** A matrix of integers. The number of rows is equal to the number of fleets and the number of columns is equal to the number of age classes. The matrix describes the coupling of variance parameters for the different states in the log-scale fishing mortality random walk process. '-1' should be used for entries where no fishing mortality state is defined in keyLogFsta above. For the valid entries consecutive integers starting at zero must be used, because they are used as indices in the corresponding parameter vector. If the same number is used for two age classes, then the catchability for those age classes are assumed equal (linked to the same parameter). ((a curiosity of this setup is that it is possible to set different variance parameter indices for F-states that are coupled in keyLogFsta. This is ignored and the index corresponding to the lowest F-state number is used)).
- **\$keyVarLogN:** A vector of integers. The length of the vector is equal to the number of age classes. The vector describes the coupling of variance parameters for the log(N)-process. Consecutive integers starting at zero must be used, because they are used as indices in the corresponding parameter vector. If the same number is used for two age classes, then the catchability for those age classes are assumed equal. A typical setup is to use a unique index for the first age group, because that corresponds to the variance in the (stock-)recruitment, which is often not similar to the variance in the survival process from year to year.

\$keyVarObs: A matrix of integers. The number of rows is equal to the number of fleets and the number of columns is equal to the number of age classes. The matrix describes the coupling of observation variance parameters. '-1' should be used for entries where no observations are available. For the valid entries consecutive integers starting at zero must be used, because they are used as indices in the corresponding parameter vector. If the same number is used for two age classes, then the observation variance for those age classes are assumed equal (linked to the same parameter).

\$obsCorStruct: A factor specifying the covariance structure used across ages for each fleet. The length of the factor is equal to the number of fleets. The possible options are: ("ID" independent, "AR" AR(1), or "US" for unstructured).

\$keyCorObs: A matrix of integers. The number of rows is equal to the number of fleets and the number of columns is equal to the number of age classes _minus_ _one_. The matrix describes the coupling AR correlations between age classes, and hence is only meaningful for fleets where the "AR" observation correlation structure is chosen. '-1' should be used for entries where no observations are available. Notice that the matrix has one column less than the number of age classes, which is because the correlation between age classes is described. Consecutive integers starting at zero must be used. If the same number is used for a given fleet it means that a normal AR(1) structure is used. If different numbers are used for a fleet it means that the correlation parameter changes where the numbers differ. If the "AR" structure is specified above, then the corresponding row in this matrix must have valid non-negative entries

\$stockRecruitmentModelCode: A single integer to specify the stock recruitment connection to use:

Model
plain random walk on log recruitment
Ricker
Beverton-Holt
piece-wise constant
segmented regression (hockey stick)
AR(1) on log-recruitment
bent hyperbola (smooth hockey stick)
power function with degree < 1
power function with degree > 1
Shepherd
Deriso/Hassel
Saila-Lorda
sigmoidal Beverton-Holt
CMP spline (Non-increasing spline on log(R/S))
Integrated spline on log(R/S)
Spline on log(R/S)

See Albertsen & Trijoulet (2020) for details.

\$constRecBreaks: A vector of years to determine piece-wise constant recruitment periods for recruitment model 3. A vector of knot placements on log-SSB for spline recruitment models (90, 91, 92).

\$hockeyStickCurve Determines the smoothness of recruitment model 63. The smoothness is estimated if set to NA.

saveConf 87

\$noScaledYears: A single integer specifying the number of years where catch scaling is to be estimated (most often 0, as this is a somewhat exotic option).

- **\$keyScaledYears:** A vector of the years where catch scaling is applied (length should match noScaledYears) (most often empty, as this is a somewhat exotic option).
- **\$keyParScaledYA:** A matrix of integers specifying the couplings of scale parameters (nrow = noScaledYears, ncols = no ages) (most often empty, as this is a somewhat exotic option).
- **\$fbarRange:** An integer vector of length 2 specifying lowest and highest age included in Fbar (average fishing mortality summary).
- **\$keyBiomassTreat:** A vector of integers with length equal to the number of fleets. '-1' should be used for entries where the corresponding fleet is not a mass index. A the corresponding fleet is a mass index, then three options are available (0 SSB index, 1 catch index, and 2 FSB index).
- **\$obsLikelihoodFlag:** A factor specifying the type of likelihood to use for each fleet. The length of the factor is equal to the number of fleets. The possible options are: ("LN" for log-normal and "ALN" Additive logistic normal).
- **\$fixVarToWeight:** A single integer. If weight attribute is supplied for observations this option defines how it is treated (0 as relative weight, 1 as a fixed variance = weight).

Value

an object of class sam

References

Albertsen, C. M. and Trijoulet, V. (2020) Model-based estimates of reference points in an age-based state-space stock assessment model. Fisheries Research, 230, 105618. doi:10.1016/j.fishres.2020.105618

Examples

```
data(nscodData)
data(nscodConf)
data(nscodParameters)
nscodData$idxCor
storage.mode(nscodData$idxCor)
fit <- sam.fit(nscodData, nscodConf, nscodParameters, silent = TRUE)</pre>
```

saveConf

Saves a model configuration list to a file

Description

Saves a model configuration list to a file

```
saveConf(x, file = "", overwrite = FALSE)
```

88 sdplot

Arguments

X	sam configuration list as returned from defcon or loadConf	

file the file to save the configuration to

overwrite logical if an existing file should be overwritten (FALSE by default)

Details

function useful for saving a model configuration. A saved configuration can be read back in via the loadConf function

sdplot	Plots the sd of the log observations as estimated in SAM in increasing
	order

Description

Plots the sd of the log observations as estimated in SAM in increasing order

Usage

```
sdplot(fit, barcol = NULL, marg = NULL, ylim = NULL, ...)
## S3 method for class 'sam'
sdplot(fit, barcol = NULL, marg = NULL, ylim = NULL, show.rel.w = FALSE, ...)
```

Arguments

fit	the object returned from sam.fit
barcol	color for each fleet and age
marg	margin for plot (mar in par())
ylim	bounds for y-axis
	extra arguments to plot
show.rel.w	plots the relative weight of each observation rather than the sd, estimated as $(1/sd^2)/max(1/sd^2)$

setS 89

setS

small helper function

Description

small helper function

Usage

setS(x)

Arguments

Χ

vector if indices

Details

internal

setSeq

small helper function

Description

small helper function

Usage

```
setSeq(min, max)
```

Arguments

 $\begin{array}{ll} \text{min} & \text{from} \\ \\ \text{max} & \text{to} \\ \end{array}$

Details

internal

90 setup.sam.data

setup.sam.data

Combine the data sources to SAM readable object

Description

Combine the data sources to SAM readable object

Usage

```
setup.sam.data(
  fleets = NULL,
  surveys = NULL,
  residual.fleets = NULL,
 prop.mature = NULL,
  stock.mean.weight = NULL,
  catch.mean.weight = NULL,
  dis.mean.weight = NULL,
  land.mean.weight = NULL,
  natural.mortality = NULL,
 prop.f = NULL,
  prop.m = NULL,
  land.frac = NULL,
  recapture = NULL,
  sum.residual.fleets = NULL,
  aux.fleets = NULL,
  keep.all.ages = FALSE,
  average.sampleTimes.survey = TRUE,
  fleetnames.remove.space = TRUE
)
```

Arguments

```
fleets comm fleets vith effort (currently unimplemented)
surveys surveys
residual.fleets
fleet, or list of fleets without effort information
prop.mature pm
stock.mean.weight
sw
catch.mean.weight
cw
dis.mean.weight
dw
land.mean.weight
lw
```

simstudy 91

```
natural.mortality
nm

prop.f ...

prop.m ...

land.frac ...

recapture ...

sum.residual.fleets
...

aux.fleets ...

keep.all.ages ...

average.sampleTimes.survey
Should sample times for surveys be averaged?

fleetnames.remove.space
Should white space in fleet names be removed?
```

Details

•••

simstudy

Simulate data from fitted model and re-estimate from each run

Description

Simulate data from fitted model and re-estimate from each run

Usage

```
simstudy(fit, nsim, ncores = detectCores())
```

Arguments

fit a fitted model returned from sam.fit

nsim number of simulations

ncores number of cores to be used

92 simulate.sam

simulate.sam

Simulate from a sam object

Description

Simulate from a sam object

Usage

```
## S3 method for class 'sam'
simulate(
  object,
  nsim = 1,
  seed = NULL,
  full.data = TRUE,
  keep.process = FALSE,
  retain.missing = FALSE,
  ...
)
```

Arguments

```
object sam fitted object as returned from the sam. fit function

nsim number of response lists to simulate. Defaults to 1.

seed random number seed

full.data logical, should each inner list contain a full list of data. Defaults to TRUE

keep.process Keep logN and logF processes when full.data = TRUE?

retain.missing Keep NA in places where observations are missing?

... extra arguments
```

Details

simulates data sets from the model fitted and conditioned on the random effects estimated

Value

returns a list of lists. The outer list has length nsim. Each inner list contains simulated values of logF, logN, and obs with dimensions equal to those parameters.

sprplot 93

sprplot

SAM SPR plot

Description

```
SAM SPR plot
```

Usage

```
sprplot(fit, ...)
## Default S3 method:
sprplot(fit, ...)
## S3 method for class 'samforecast'
sprplot(fit, ...)
## S3 method for class 'hcr'
sprplot(fit, ...)
```

Arguments

fit the object returned from sam.fit
... extra arguments transferred to plot including the following:
add logical, plotting is to be added on existing plot
ci logical, confidence intervals should be plotted

cicol color to plot the confidence polygon

Details

Plot of deterministic equilibrium spawners per recruit assuming biological parameters and selectivity for that year remains unchanged in the future.

sprtable

SPR table

Description

SPR table

```
sprtable(fit, ...)
## Default S3 method:
sprtable(fit, ...)
```

94 srplot

Arguments

```
fit ... extra arguments not currently used
```

Details

...

srplot

Plots the stock recruitment

Description

Plots the stock recruitment

Usage

```
srplot(fit, ...)
## S3 method for class 'sam'
srplot(
  fit,
  textcol = "red",
 years = TRUE,
 linetype = "1",
 linecol = "black",
 polycol = do.call("rgb", c(as.list(col2rgb("black")[, 1]), list(alpha = 0.1))),
 polyborder = do.call("rgb", c(as.list(col2rgb("black")[, 1]), list(alpha = 0.3))),
 polylty = 3,
 polylwd = 1,
 xlim,
 ylim,
 add = FALSE,
 CIlevel = 0.95,
  addCurve = TRUE,
)
```

Arguments

```
fit the object returned from sam.fit
... extra arguments to plot
textcol color of years on plot
years the plotting symbols are the years
linetype type for the plot (default line)
```

ssbplot 95

linecol color of lines between points

polycol Inner color of error ellipses

polyborder Border color of error ellipses

polylty Border line type of error ellipses

polylwd Border line width of error ellipses

xlim bounds for x-axis

xlim bounds for x-axis ylim bounds for y-axis

add false if a new plot should be created

CIlevel Confidence level for error ellipses on stock-recruitment pairs

addCurve Call addRecruitmentCurve?

ssbplot SAM SSB plot

Description

SAM SSB plot

Usage

```
ssbplot(fit, ...)
## Default S3 method:
ssbplot(fit, ...)
## S3 method for class 'samforecast'
ssbplot(fit, ...)
## S3 method for class 'hcr'
ssbplot(fit, ...)
```

Arguments

fit the object returned from sam.fit

extra arguments transferred to plot including the following: add logical, plotting is to be added on existing plot

ci logical, confidence intervals should be plotted cicol color to plot the confidence polygon

Details

Plot of spawning stock biomass

ssbtable

SSB table

Description

```
SSB table
```

Usage

```
ssbtable(fit, ...)
## Default S3 method:
ssbtable(fit, ...)
```

Arguments

```
fit ... extra arguments not currently used
```

Details

...

 ${\it stochastic}{\it Reference points}$

Estimate stochastic reference points

Description

The function estimates reference points based on stochastic model forecasts.

```
## S3 method for class 'sam'
stochasticReferencepoints(
    fit,
    referencepoints,
    method = "Median",
    catchType = "catch",
    nYears = 100,
    Frange = c(0, 2),
    nosim = 200,
    aveYears = max(fit$data$years) + (-9:0),
```

```
selYears = max(fit$data$years),
      newton.control = list(),
      seed = .timeToSeed(),
      knots = round(nosim/20),
      nosim_ci = 200,
      derivedSummarizer = NA,
      nTail = 1,
      constraint = "F=%f",
      deterministicF = TRUE,
      Fsequence = seq(Frange[1], Frange[2], len = 50),
      run = TRUE,
      DT = 0,
      equilibriumMethod = c("EC", "ES", "AD"),
      ncores = 1,
    )
Arguments
    fit
                      a sam fit
    referencepoints
                      a character vector of reference points to estimate (see Details)
                      additional parameters that can be passed on
                     estimation method (See Details)
    method
    catchType
                     catch type: catch, landing, discard
    nYears
                     Number of years to forecast
    Frange
                      Range of F values to consider
                      Number of simulations for estimation
    nosim
    aveYears
                      Years to average over for biological input
                      Years to average over for selectivity
    selYears
    newton.control List of control parameters for optimization
    seed
                      Seed for simulations
    knots
                      Number of knots to use
    nosim_ci
                     Number of simulations for bootstrap confidence intervals
    derivedSummarizer
                     Function to summarize derived per-recruit values
                     Number of years from the simulation to include in calculations
    nTail
                     Format of forecast constraint. "%f" is replaced by F values.
    constraint
    deterministicF If FALSE, modelled logF process noise will be added to target logF in forecasts.
                     F sequence to explore
    Fsequence
    run
                      run it?
    DT
    equilibriumMethod
```

method to use Number of cores

ncores

Details

The following reference points are implemented:

```
F=x F fixed to x, e.g., "F=0.3" (NOT IMPLEMENTED YET)
```

StatusQuo F in the last year of the assessment (NOT IMPLEMENTED YET)

StatusQuo-y F in the y years before the last in the assessment, e.g., "StatusQuo-1" (NOT IM-PLEMENTED YET)

MSY F that maximizes yield

0.xMSY Fs that gives 0.x*100% of MSY, e.g., "0.95MSY"

Max F that maximizes yield per recruit (NOT IMPLEMENTED YET)

0.xdYPR F such that the derivative of yield per recruit is 0.x times the derivative at F=0, e.g., "0.1dYPR" (NOT IMPLEMENTED YET)

0.xSPR F such that spawners per recruit is 0.x times spawners per recruit at F=0, e.g., "0.35SPR" (NOT IMPLEMENTED YET)

0.xB0 F such that biomass is 0.x times the biomass at F=0, e.g., "0.2B0" (NOT IMPLEMENTED YET)

Reference points can be estimated using these methods:

Mean Use least squares to estimate mean equilibrium values

Q0.x Use quantile regression to estimate the 0.x quantile of equilibrium values

Median Identical to Q0.5

Mode (NOT IMPLEMENTED YET)

To estimate median equilibrium yield, as required by ICES, the method "Q0.5" should be used. Note that this function is highly experimental.

Value

reference point object

Examples

```
## Not run:
    stochasticReferencepoints(fit, c("MSY","0.95MSY"))
## End(Not run)
```

stockassessment-deprecated

Deprecated and defunct functions

Description

Deprecated and defunct functions

referencepoints

For referencepoints, use deterministicReferencepoints.

summary.sam

Summary of sam object

Description

Summary of sam object

Usage

```
## S3 method for class 'sam'
summary(object, ...)
```

Arguments

```
object sam fitted object as returned from the sam.fit function extra arguments
```

Details

summary table containing recruits, SSB, and Fbar

100 tsbplot

tableit

Table helper

Description

Table helper

Usage

```
tableit(fit, what, x = fit$data$years, trans = function(x) x, ...)
## S3 method for class 'sam'
tableit(fit, what, x = fit$data$years, trans = function(x) x, ...)
## S3 method for class 'samforecast'
tableit(fit, what, x = fit$data$years, trans = function(x) x, ...)
```

Arguments

fit returned object from sam.fit what quoted name of what to extract

x rownames of tabletrans function to be applied

... extra arguments not currently used

Details

•••

tsbplot

SAM TSB plot

Description

```
SAM TSB plot
```

```
tsbplot(fit, ...)
## Default S3 method:
tsbplot(fit, ...)
```

tsbtable 101

Arguments

fit the object returned from sam.fit

... extra arguments transferred to plot including the following:
add logical, plotting is to be added on existing plot
ci logical, confidence intervals should be plotted
cicol color to plot the confidence polygon

Details

Plot of total stock biomass

tsbtable

TSB table

Description

TSB table

Usage

```
tsbtable(fit, ...)
## Default S3 method:
tsbtable(fit, ...)
```

Arguments

fit ...

... extra arguments not currently used

Details

•••

write.data.files

Write all data files from a list as created by 'setup.sam.data'

Description

Write all data files from a list as created by 'setup.sam.data'

```
write.data.files(dat, dir = ".", writeToOne = TRUE, ...)
```

102 write.ices

Arguments

dat A list as created by 'setup.sam.data'

dir Directory where the files are written

writeToOne Write multi fleet data to one file if data is equal for all fleets

... other arguments passes to write.ices

Details

Write all data files from a list as created by 'setup.sam.data'

write.ices

Write ICES/CEFAS data file from matrix

Description

Write ICES/CEFAS data file from matrix

Usage

```
write.ices(x, fileout, writeToOne = TRUE, ...)
```

Arguments

x a matrix where rownames are taken as years and colnames are taken as ages

fileout file name or connection

writeToOne Write multi fleet data to one file if data is equal for all fleets

... Arguments to be passed to write

Details

Takes the data and writes them in the ICES/CEFAS format. It is assumed that rows represent consecutive years and cols consecutive ages

write.surveys 103

write.surveys

Write surveys in ICES/CEFAS data file from a model object

Description

Write surveys in ICES/CEFAS data file from a model object

Usage

```
write.surveys(fit, fileout, ...)
```

Arguments

fit A fitted object as returned from sam.fit

fileout file name or connection

... Arguments to be passed to write

Details

Takes the survey data from the fitted object and writes them in the ICES/CEFAS format.

yearslostplot

SAM years lost to fishing plot

Description

SAM years lost to fishing plot

```
yearslostplot(fit, cause, ...)
## Default S3 method:
yearslostplot(fit, cause = c("Fishing", "Other", "LifeExpectancy"), ...)
## S3 method for class 'samforecast'
yearslostplot(fit, cause = c("Fishing", "Other", "LifeExpectancy"), ...)
## S3 method for class 'hcr'
yearslostplot(fit, cause = c("Fishing", "Other", "LifeExpectancy"), ...)
```

104 yearslosttable

Arguments

fit the object returned from sam.fit
cause Fisning, Other, or LifeExpectancy

... extra arguments transferred to plot including the following:

add logical, plotting is to be added on existing plot ci logical, confidence intervals should be plotted cicol color to plot the confidence polygon

Details

Plot of years lost to fishing

yearslosttable

Years Lost table

Description

Years Lost table

Usage

```
yearslosttable(fit, cause, ...)
## Default S3 method:
yearslosttable(fit, cause = c("Fishing", "Other", "LifeExpectancy"), ...)
```

Arguments

fit ...

cause Fisning, Other, or LifeExpectancy
... extra arguments not currently used

Details

•••

ypr 105

ypr

Yield per recruit calculation

Description

Yield per recruit calculation

Usage

```
ypr(
  fit,
  Flimit = 2,
  Fdelta = 0.01,
  aveYears = min(15, length(fit$data$years)),
  ageLimit = 100,
  sprProp = 0.35,
)
## S3 method for class 'sam'
ypr(
  fit,
  Flimit = 2,
  Fdelta = 0.01,
  aveYears = min(15, length(fit$data$years)),
  ageLimit = 100,
  sprProp = 0.35,
)
```

Arguments

fit	the object returned from sam.fit
Flimit	Upper limit for Fbar
Fdelta	increments on the Fbar axis
aveYears	Number of years back to use when calculating averages (selection, weights,)
ageLimit	Oldest age used (should be high)
sprProp	Proportion of SPR at F=0, for example 0.35 if F0.35SPR
	extra arguments not currently used

106 yprtable

yprplot

SAM YPR plot

Description

```
SAM YPR plot
```

Usage

```
yprplot(fit, ...)
## Default S3 method:
yprplot(fit, ...)
## S3 method for class 'samforecast'
yprplot(fit, ...)
## S3 method for class 'hcr'
yprplot(fit, ...)
```

Arguments

fit the object returned from sam.fit

extra arguments transferred to plot including the following: add logical, plotting is to be added on existing plot

ci logical, confidence intervals should be plotted cicol color to plot the confidence polygon

Details

Plot of deterministic equilibrium yield per recruit assuming biological parameters and selectivity for that year remains unchanged in the future.

yprtable

YPR table

Description

YPR table

```
yprtable(fit, ...)
## Default S3 method:
yprtable(fit, ...)
```

yprtable 107

Arguments

fit ...

... extra arguments not currently used

Details

...

Index

* datasets nscodConf, 54 nscodData, 55 nscodParameters, 55 .SAM_replicate, 4	forecast, 26, 29, 49, 50 forecastMSY, 28, 78 fselectivityplot, 30 generationlengthplot, 30
addforecast, 5 addRecruitmentCurve, 6 b0plot, 7 b0table, 8 bc, 9	generationlengthtable, 31 getAllDerivedValues, 31 getFleet, 32 getLowerBounds, 32 getResidualFleets, 33 getUpperBounds, 33 grad, 34
c.sam, 9 catchbyfleetplot, 10 catchbyfleettable, 10 catchplot, 11 catchtable, 12 caytable, 12 clean.void.catches, 13 coef.sam, 13, 68	hcr, 34, 38, 59, 67 hessian, 36 ibc, 37 icesAdviceRule, 37 iibc, 38 is.whole.positive.number, 39
componentplot, 14 corplot, 15 corplotcommon, 15 dataplot, 16 defcon, 13, 16, 84 defpar, 17, 84 deterministicReferencepoints, 18, 99	jacobian, 40 jit, 40 leaveout, 41 lifeexpectancyplot, 42 lifeexpectancytable, 43 loadConf, 43, 84 logLik.sam, 44
empirobscorrplot, 19 equilibriumbiomassplot, 20 equilibriumbiomasstable, 21 erbplot, 21 erbtable, 22 faytable, 22 fbarplot, 23 fbartable, 25 fitfromweb, 25 fitplot, 26	modelDescription, 44 modelforecast, 35, 45 modeltable, 51 modelVersionInfo, 51 mohn, 52 MSE, 52 newton, 19 nobs.sam, 53 nscodConf, 54 nscodData, 55
11tp10t, 20	nacoupata, 33

INDEX 109

nscodParameters, 55	saveConf, <i>84</i> , <i>87</i>
ntable, 56	sdplot, 88
	sdreport, 19
obscorrplot, 57	setS, 89
obscov, 57	setSeq, 89
	setup.sam.data,90
parplot, 58	simstudy, 91
partable, 58	simulate.sam, 92
plot.hcr, 59	sprplot, 93
plot.sam, 59	sprtable, 93
plot.samforecast, 60	srplot, 94
plot.samres, 60	ssbplot, 59, 95
plot.samset, 61	ssbtable, 96
plot.samypr, 61	stochasticReferencepoints, 96
plotby, 62	stockassessment-deprecated, 99
plotit, 63	summary.sam, 99
predstdplot, 66	Sullillar y . Salli, 99
print.hcr, 67	tableit, 100
print.sam, 67	tsbplot, 100
print.sam_referencepoints, 70	tsbtable, 101
	tobtable, for
print.samcoef, 68	write.data.files, 101
print.samforecast, 68	write.ices, 102
print.samres, 69	write.surveys, 103
print.samset, 69	Wiltersuiveys, 105
print.samypr, 70	yearslostplot, 103
procres, 60, 69, 71	yearslosttable, 104
	ypr, 105
qtable, 71	yprplot, 106
qtable.sam,72	yprtable, 106
qtableplot, 72	ypi table, 100
read.data.files,73	
read.ices, 73	
read.surveys, 74	
read.table.nowarn,74	
recplot, 59, 75	
rectable, 75	
reduce, 76	
referencepoints, 29, 70, 77	
refit, 79	
residuals.sam, 60, 69, 79	
retro, 80	
rmaxplot, 80	
rmaxtable, 81	
rmvnorm, 82	
runwithout, 82	
sam.fit, 9, 13, 42, 44, 53, 59-61, 67, 71, 79, 80, 83, 92, 99	